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Spin glasses is a fascinating field, from which a variety of theoretical models and concepts were
invented. As an emergent state from the random magnetic system, it defers from other statistical
systems in several ways. In particular, the quenched variables prevent the system to be ergodic,
and the competitive interactions gives rise to non-trivial degeneracies of the ground states as well
as the excitations. In this essay, I will briefly discuss these generic features of spin glasses by
presenting some of the characteristic experimental results followed by theoretic analysis. The
broken symmetries are discussed with compare to other magnetic systems. Hydrodynamic theory,
as well as numerical investigations are discussed aiming to identify the low lying excitations.
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I. INTRODUCTION

Magnetic systems always provide us with a lot of interesting phenomena to study. Such as ferromagnetic(FM) and
anti-ferromagnetism(AFM) etc., both systems are associated with spontaneously broken symmetries. In ferromagnetic,
one breaks the global SO(3) symmetry, and the order parameter(OP) which signatures the phase transition of the
system is the average magnetism, defined by MF = 1/N

∑

i〈Si〉. In anti-ferromagnetism, the global SO(3) symmetry
is also broken, and we have the order parameter defined as ”staggered magnetism”, MAF = 1/N

∑

i e−iK·ri〈Si〉.
Those systems are well behaved in a sense that all spins in a symmetry broken state are align collinearly along a
particular axis in space, i.e, the system breaks its symmetry from SO(3) to SO(2). However, it is noticed later,
when people was trying to understand the low-temperature behavior of certain kinds of well-known alloys like AuFe
or CuMn, under a critical temperature Tf , those systems fell into a state which is not like that of a paramagnetism,
ferromagnetism, ferrimagnetism or anti-ferromagnetism. It is a state with a frozen disorder, not a uniform pattern
we expect in conventional magnets. Those systems are generally referred as spin glasses in literature. Some believed
that there is a phase transition happened near the transition temperature Tf , and some other evidence showed that
the systems is not in equilibrium state, because the very long relaxation time of the system. Here some interesting
questions emerges: 1), Is there any phase transitions near the critical temperature, if there is, then 2) what is broken
symmetry and 3) what is the order parameter to describe those system. Also, if the relaxation time of the system is
very long, then nonergodicity becomes a problem, 4) how can we deal those system with a lot quenched parameters.

The theoretic work dated back to the 1960s, when people use Ising model with RKKY interactions to describe spin
glasses. It was not until when Edwards and Anderson(1) published their paper on the theory of spin glass, that this
field became a very excited area. In their paper, Edwards and Anderson introduced the random bond model and the
spin glass order parameter

qEA = lim
t→∞

lim
N→∞

[Si(t0)Si(t0 + t)]av (1)

in which we use [ ]av to denote the average over disorder. We will discuss this model in detail afterwards.

The arrangement of this essay will be as following. In first section, I will describe the experimental observations
of the system, and present what is the necessary ingredients for a system to be treated as a spin glass. In second
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section, I will describe some basic theoretical concepts in spin glass, including broken symmetry, order parameter and
low energy excitations in spin glass, with compare to other magnetic order, particularly, paramagnetic, ferromagnetic
and anti-ferromagnetic. In the third section, I am going to describe the hydrodynamic theory of spin glass, and
another possible way to find the spin waves in those disorder systems, using some approximate decouple scheme in
the equation of motion, and show some numerical results obtained so far.

II. EXPERIMENTAL STUDIES IN SPIN GLASSES

In this section, I will present some of the characteristic experiments in spin glasses systems, and compare them to
that in conventional magnetic systems. I will concentrate on two major findings in spin glass, one is the time-dependent
susceptibility, and another is the specific heat of spin glasses.

We know that in high-temperature, the susceptibility of the magnetic system obeys the so called Curie-Weiss
law:χ = C/(T − θ), where C is the Curie constant. Surprisingly, in spin glass system, one found that the deviation
from the Curie-Weiss law even well above the spin glass transition temperature, around T = 5Tf . This means strong
correlation, at least locally, has developed in the system. One typical data for the zero-filed frequency dependent
susceptibility is shown in Fig.1(2).

FIG. 1 Real part of susceptibility χ(ω) as a function of temperature for sample IIc. Inset reveals frequency dependence and
frequency dependence of the cusp by using of strongly expanded coordinate scale. After Mulder et al.(2).

In the above figure, we can see that there is a frequency dependent cusp in the low temperature susceptibility, and
it turns out that this is a fairly universal behavior in spin glass system.

Another striking feature of the spin glass system is the strong preparation-dependent d.c susceptibility. The
susceptibility obtained by cooling the system in the measurement field (FC: field cooling) yielded a higher value
than that obtained from first cool the system and then applying the magnetic field(ZFC: zero-filed cooling). In
Fig.2(3), we show a demonstration of this phenomena. Those preparation-dependence are also seen in the remanent
magnetization,i.e, result is higher if we cool the system in the external field and them remove the field than that in
the case we cool in a zero external field and then measure the remanent magnetization. All these phenomena suggests
that there are certain degrees of freedom of the system in choosing its state in low temperature, i.e, a set of states
with free energy very close to each other but has a high energy barrier between them. If in a external field, system
will try to relax itself to a state in which it has the lowest free energy,i.e, largest magnetization along the external
field; if it is not in a external magnetic field, then due to the high free energy barrier, the system will reside in one of
those free energy valleys (depending on the initial conditions, which also illustrate the preparation-dependent of the
susceptibility), and have a relatively small susceptibility.

Caution should be taken to interpret those phenomena. Is the system in true equilibrium state? In 1984, Wegner
and Mydosh(4) observed that the fc susceptibility of the cobalt aluminosilicate spin glass depends on the cooling
rate; and also fc susceptibility will slowly vary with time as observed by Lundgren et al(5). The zero-field cooling
susceptibility depends strongly on the time the sample is kept in the constant temperature after cooling prior to the
field application. All these suggest that maybe the true equilibrium state hasn’t yet been achieved. Lundgren et al.
estimated the relaxation time of a CuMn spin glass, which yield a relaxation time as long as 1020 sec. at T = 23K,(
while Tf = 27K for Cu with 4 at. % Mn)(5).

Now, let’s now check the specific heat. There is a rather broad peak at temperature exceeding the freezing tem-
perature at about 20%; at T < Tf , it varies approximately linearly with T . In the magnetic field, the specific heat
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FIG. 2 Static susceptibility of CuMn vs temperature for different concentrations of Mn. After zero-field cooling (H <
0.05Oe),initial susceptibilities (b) and (d) were taken for increasing temperature in H = 5.9Oe. The susceptibilities (a)
and (c) are obtained in the field H = 5.9Oe, which is applied above the freezing temperature Tf before cooling the sample,
After Nagata et al..(3)

FIG. 3 Magnetic contribution of the specific heat of CuMn spin glasses with 2.79% Mn plotted vs temperature in various
magnetic fileds. After Brodale et al..(6)

profile will get rounded. We show a typical behavior below in Fig.3.(6). We can see that in higher fields goes round
and lose the peak in the specific heat, which is in contradict to the prediction of mean field theory, while mean field
theory predict quite pronounced singularity in the low temperature susceptibility, although this does not necessarily
mean that there is no phase transition at Tf . A close inspection gives the behavior of specific heat as

CM ≈ c1T + c2T
2 (2)

Some other experiments shows that in amorphous Gd − Al alloy, which in some respects like the spin glass system,
have a T 3/2 dependence of the specific heat, as shown by J. M. D. Coey(8).

One can check the question of thermal equilibrium here by see the validity of the thermal dynamic relation. Fogle
et al.(9) studied the Maxwell relation

[

∂2M

∂T 2

]

=
1

T

[

∂CM

∂H

]

T

(3)

surprisingly, no measurable deviation from (3) existed.

We have shown the most characteristic experimental phenomena for the spin glass state. 1),Low-field, low-frequency
a.c. susceptibility χ(T ) exhibits a cusp at transition temperature Tf ; 2), no sharp anomaly appears in the specific
heat; 3),history dependent of the susceptibility; also there are some other characteristic phenomena exists in spin
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glass such as 4)lucking of Bragg peaks below Tf , which means no long range order exist in the system. We will not
discuss all those phenomena in the following, but, we will focus, in particular, the specific heat observed in spin glass
systems, comparing them to other conventional magnetic ordering states, and try to illustrate a way which could,
possibly, explains the behavior of specific heat at low temperature.

III. BASIC CONCEPTS IN SPIN GLASSES

In this section, I will present the basic concepts needed to understand the spin glass system. First I will introduce
two models to describe spin glass system, which capture the basic ingredients of spin glass. Then I will describe what
is the broken symmetry and order parameters, and finally the spin waves in spin glass.

As mentioned before in the introduction, there is certain kind of disorder in the system, as magnetic impurities
occupy the lattice site randomly. But this is not sufficient to be a spin glass. In addition, we have shown in spin
glass system, there is a set of states with similar free energy, but with high free energy barrier between them. Above
Tf , the system can make its way from one state to any other states, and achieve the thermal equilibrium, technically,
the system is ergodic, it can wonder around the whole phase space. But as the temperature approaching the freezing
temperature, the free energy barrier develops, and the system may reside in one of those states which is a local free
energy minima. Because of the high free energy barrier between those states, the system will sit in one of those state
for a long time compared to the observation time, so the system breaks ergodicty, it can not wonder around a whole
phase space, but just part of it. Those meta-stable states in spin glass are due to some competition interactions,
which can not be satisfied simultaneously. which is called frustration.

The first model which captures essentially those two ingredients is the so called random site model. In which the
randomness comes from the fact that the impurity atoms can occupy randomly the lattice sites, and the interac-
tion takes the form of RKKY interaction1. The system in this class are generally called RKKY glasses. Another
model introduced by Edwards and Anderson(1), in which they choose the spins to be a regular lattice(translationally
invariant), but with random interactions between spins. The hamiltonian of the system is

H = −
1

2

∑

i,j

JijSi · Sj (4)

where i, j are lattice sites, and the interactions Jij are taken to be random with a distribution which dependent on
the distance Ri − Rj . In practice, it is convenient to choose the symmetric Gaussian distribution

P (Jij) =
1

(2π∆ij)1/2
exp

[

−
J2

ij

2∆ij

]

(5)

There is further simplification of the model, which take the exchange interaction to be short range, for instance,
nearest neighbor interaction. In the following, we will concentrate on such model.

As mentioned before, the spin glass system breaks ergodicity. This put a serious problem if we want to apply
equilibrium statistics mechanics. One way to get rid of that is by using the appropriate boundary conditions to
restrict the phase space to be in a certain part of the whole phase space. Like in two dimensional Ising spin, you can
put all the spin on the boundary spin up, and this will restrict the whole system to be in a state with M > 0 to be
the equilibrium state, rather than M < 0.Another way of doing this is by using of replica theory, by replicating N
systems. Using the fact that

lnZ = lim
n7→0

Zn − 1

n
(6)

to evaluate the quantity lnZ, which is self-averaging. I will not discuss this here. One can consult the paper written
by David Sherrington (15).

1 The RKKY interaction has an oscillatory behavior, comes from the fact the impurity atoms polarize the conduction electrons of the
host metal, and the spin susceptibility has the form

χ0(r) ∝
cos2kF r

r3
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FIG. 4 Phase diagram of the spin glass system EuxSr1−xS. After P. Monod et al..(10)

We now turn to the problem of broken symmetry in spin glass and introduce the order parameter. To do this, I will
first give a phase diagram of a specific spin glass system, EuxSr1−xS. There are three phases in the phase diagram.
In paramagnetic phase(PM), the system has the highest SO(3) symmetry; in ferromagnetic and anti-ferromagnetic,
one breaks the SO(3) to SO(2).In ferromagnetic, we have the order parameter as pointed out in the introduction.

MF = 1/N
∑

i

〈Si〉 (7)

Similarly, we have the order parameter for anti-ferromagnetic

MAF = 1/N
∑

i

e−iK·ri〈Si〉 (8)

Those order parameter goes to zero in paramagnetic state and takes a finite value in the ferromagnetic (anti-
ferromagnetic) state.What is the order parameter for spin glass then, from the above analysis, it seems that the
spin glass state is more like a paramagnetic, in a sense that it has a disorder in it, as the random orientation of
spins in paramagnetic. It turns out that the spin glass system also breaks the SO(3) symmetry, but with a zero total
magnetization MF = 1/N

∑

i〈Si〉=0. How can we tell the difference of a spin glass with a paramagnetic state? Here
Edwards-Anderson come to rescue. They define the order parameter as in (1). Let us consider the static situation,
which is then

qEAij = [Si · Sj ]av = qEAδij (9)

We will simply taken the qEA as the spin glass order parameter, which is believed to be zero in paramagnetic phase,
and take a non-zero value in spin glass state. Here we list varies quantities that are important in magnetic systems.

Table 1 :Characteristics of the magnetic systems2

Systems Broken Symmetry Order Parameter Transition Temperature

Paramagnetic NO M = 0,MAF = 0, qEA = 0 in high temperature

Ferromagnetic SO(3) → SO(2) M 6= 0,MAF = 0, qEA 6= 0 T < Tc (Curie temperature)

Anti-ferromagnetic SO(3) → SO(2) M = 0,MAF 6= 0, qEA 6= 0 T < Tn (Néel temperature)

Spin Glass M 6= 0, SO(3); M = 0, NO M = 0,MAF = 0, qEA 6= 0 T < Tf (freezing temperature)

2 Here, we only considering the symmetry associated with the global rotation, since this is responsible for the spontaneous magnetization
of the system. And also, I left diamagnetism and ferrimagnetism, since it won’t give any new insights into the symmetry consideration
discussed here. A note about the symmetries in spin glasses. It is sure that the O(3) symmetry in SG transition is totally broken, if we
assume the spin lives in three dimensions.
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Knowing order parameters and broken symmetry, we can then tell the differences between each phase, and more
importantly, we can construct the free energy of the system, based on the symmetry requirement. We will show this
later.

We now turn to discuss the spin waves in magnetism system and give the dispersion relation of these spin wave modes.
We will give here very simplified consideration based on the symmetry principles. For more technical derivation, see
the review article by J. Van Kranendonk and J. H. van Vleck in Reviews of Modern Physics(11). For simplicity,
we consider the one dimensional spin system, which we show schematically in the following graph. We now analyze

a

Ferromagnetism

Anti-ferromagnetism

a

FIG. 5 Schematic graph of the Ising spin with ferromagnetic and anti-ferromagnetic alignment. The lattice constant is a.

the symmetries of both cases. In ferromagnetic case, one preserve the translational symmetry, denoting by U(a),
meaning that moving the system by one lattice site in the positive direction, and U(−a) in the negative direction.In
the mean while, the system breaks the time reversal symmetry, denoting by T , meaning that we transfer t → −t. So
the corresponding equation of motion for the spin waves should be invariant under the action of U(a), but changes
under the action of T . In this situation, we should have the spin wave dispersion relation goes like ω ∝ k2. Similarly,
for anti-ferromagnetic case, one breaks the translational and also time reversal symmetry, but we can combine these
two to give a invariant action TU(a), which will take the system back to the original state. In this case, the dispersion
relation takes the linear form as ω ∝ k. The situation is not so clear in spin glass however. There have been several
unsuccessful attempts to detect the spin waves using neutron scattering. There are several possible reasons for the
failures, which will be discussed in the next section.

For the moment, let’s make a connection between spin waves and the linear specific heat observed in experiments.
There should be at least two sources connected with magnetism which are responsible for the specific heat3. One is
associated with the field energy proportional to χH2, and another comes from the excitations independent of external
field. We can do experiments in zero external field, so we will only discuss the second contribution. Let us assume
that there are certain moods with energy ǫk, k is the wave vector, and density of states ρ(ǫ). Then the energy of the
system is

EM =

∫

∞

0

dǫf(ǫ)ǫρ(ǫ) (10)

where f(ǫ) = [exp(βǫ) − 1]−1 is the Bose-Einstein distribution. Those excitation are actually called magnon. If we
assume a linear density of states ρ(ǫ) ∝ ǫ, then we can get the specific heat linear with T . This implies that you
have a quasi-particles dispersion relation like ǫ(k) ∝ k3/2, if we have ǫ(k) ∝ k2, then we have C ∝ T 3/2. Compared
to the low temperature specific heat observed experimentally before, we see that it could possibly be interpreted as
the contribution from the spin wave excitations. But what about the inter-valley transitions, as showed by P.W.
Anderson(7), by using the two-level tunnelling model, which gives a linear specific heat at low temperature? At
present, we think that the inter-valley transition plays a minor role in the low temperature behavior, because of the
high free energy barrier between the local minimums.

IV. SPIN WAVES IN SPIN GLASSES: HYDRODYNAMIC THEORY AND NUMERICAL SIMULATIONS

We have shown in the previous section that the linear specific heat could be explained by assuming that the spin
wave dispersion takes the form as ǫ(k) ∝ k3/2. In this section, we will examine whether this is true or not. We will
approach this problem in two ways. Firstly, I will discuss the hydrodynamic theory of spin glass, and secondly, I will
discuss some results obtained by computer simulations.

3 There are sure other contributions from phonon and conduction electron etc.. In practice, we can substrate them off and get the specific
heat only due to magnetic freedom.
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In hydrodynamic theory(12), one should considering all those modes which is slow than the slowest the microscopic
mode. Let us denote the characteristic relaxation time in spin glass to be τ , then it follows that ωτ ≪ 1, where ω is the
frequency of the spin wave. The hydrodynamic mode are determined by the conservation laws and broken symmetries
in the system. In the latter case, we could expect that there might be Goldstone mode present in the system, as the
spin waves in ferromagnetism and anti-ferromagnetism, since the system has a lower symmetry in the ground state
than that of the hamiltonian. A subtle point is that, as we showed before, there are very long relaxation time in
spin glass, so it is hard to make clearly what is the scale of the frequency within which the hydrodynamics are valid.
This is surely a big problem for experiment to identify the spin wave mode using neutron scattering measurement.
Another fatal threat to hydrodynamic theory is the spin anisotropic interactions in real system, which always destroy
the prediction of hydrodynamic theory in sufficient long wave lengths.

Since hydrodynamic theory only concerns about those modes with very long wave lengths, so we can neglect lattice
details and define the ”coarse-grained” quantities(12). Like the spin density S(r)

S(r) =
1

NR

∑

j∈R

Sj (11)

where R denote a region which contains NR spins labelled as j. From the spin commutation relation [Sr
i , Ss

j ] =

iǫrstSt
iδij , we have the commutation relation for the ”coarse-grained” spin operator

[Sr(r), Ss(r′)] = iǫrstδ(r − r′) (12)

To find the order parameter, let us first pick up one particular ground state, say g. we then define the quantity

trs(r) =
1

NR

∑

j∈R

〈Sr
i 〉gS

s
j (13)

It can be seen that the Edwards-Anderson order parameter in the coarse-grained form is just

〈trs(r)〉g = qEA(δrs + ǫrstΘt(r)) (14)

Now let’s consider a small rotation about the ground state defined by the rotation operator

U = exp[i
∑

j

Θj · Sj ] (15)

we get a new state, say, g′, then we have

〈Sr
j 〉g′ = Z−1Tr(U−1ρgUSr

j ) (16)

= 〈Sr
j 〉g + ǫrstΘt(r) (17)

where ρg is the density matrix in ground state g. From (16), we can solve for Θt(r), it has the form

Θr(r) =
1

2qEA
ǫrst〈trs(r)〉g (18)

We redefine Θ(r) as an operator

Θr(r) =
1

2qEA
ǫrsttrs(r) (19)

from which we can compute the commutation for Θ(r), it is simply

[Θr(r), Θs(r′)] =
i

4qEAρ2
ǫrstSt(r)δ(r − r′) (20)

[Sr(r), Θs(r′)] = −i(δrs +
1

2
ǫrstΘt(r))δ(r − r′) (21)
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If we assume that the coarse-grained magnetism is zero, i.e, S(r) = 0, then the commutation relation (12),(20) and
(21) simply reduce to4

[Sr(r), Ss(r′)] = [Θr(r), Θs(r′)] = 0 (22)

[Sr(r), Θs(r′)] = −iδrsδ(r − r′) (23)

Now, we consider the hamiltonian of the system, as said before, can be constructed from the symmetry considera-
tions. We drop terms that are high in order of Θn, (n = 2, 4, 6 · · ·), since the energy is independent of the rotation of all
spins by the same angle Θ. In long range wavelength limit, the most important part has the form (∇Θ)2 ≡

∑

r(∇Θr)2.
So the effective hamiltonian takes the form as

Heff =
1

2

∫

d3r(χ0|S
r(r)|2 + ρs(∇Θ)2) (24)

here χ0 is the uniform susceptibility and ρs is the spin wave stiffness, both are phenomenological constants.

Neglecting the quantum fluctuations, we replace the commutation relation by Poisson brackets, and using the
canonical equation, we have

∂tS
r = {Heff , Sr} = −

δheff

δΘr
= ρs∇

2Θr (25)

∂tΘ
r = {Heff , Θr} = −

δheff

δSr
= χ−1

0
Sr (26)

The solution to the above two equations gives the solution

ω = ±c0|k|, c0 =
ρs

χ0

(27)

Further investigation of the hydrodynamic theory will give a damping term proportional to k2.

Several remarks here. Firstly, as mentioned before, the condition for the hydrodynamic to be valid, one should have
ωτ ≪ 1. It is not quite sure whether this is satisfied for spin waves to be detected practically. Secondly, we assume
in the hamiltonian that the spin stiffness is finite, but this could be wrong. There are several computer simulations
which showed that there is a large density of states in the low energy limit, which indicates that the spin stiffness
maybe zero. Thirdly, there are faster damping modes presenting in the system to which the spin wave modes are
strongly coupled, causing dramatic dissipations. The unsuccessful experiments so far could possibly be understood
from the facts list above.

The situation of spin waves is still not so clear even now. Several simulations seems to be quite good for certain
kinds of spin glass. As an exercise, we are trying to redo the calculation in a larger system using the method by
W.Y.Ching et al.(13), called the equation of motion technique. By using an approximate decoupling procedure, one
can calculate the one-magnon zero-temperature dynamic structure factor, which tells the dispersion relation of spin
waves. Due to the limitation of space, I will just outline the principal steps below, more information can be found in
reference (13).

We take the Heisenberg hamiltonian

H = −
1

2

∑

i,j

JijSi · Sj (28)

Treating it as a classic Heisenberg spin glass, we minimize the energy (28) subject to the constraint Si ·Si = 1. We can
do this by successively rotating each spin to align with its local field5. After this, we get the equilibrium configurations
of the system. Then using Holstein-Primakoff transformation to construct the local creation and annihilation operator

4 We will not discuss the situation where M 6= 0. Hydrodynamic theory can be applied to non-zero magnetization essentially the same as
that to the zero magnetization case. Also note that with M 6= 0, we break the SO(3) rotation symmetry, as shown in Table 1.

5 You can prove that by doing this, you are guaranteed to get to the ground state.
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(in one-magnon approximation). By linearizing the hamiltonian in terms of magnon creation or annihilation operators,
we can using the quantum-mechanical equation of motion to obtain the equation for magnon operators. Solving the
equation, we can then compute the dynamic structure factor in a straight forward manner. I won’t give the detail
derivation here, but simply quote some of the result here6. Ching et al. used this method for Edwards-Anderson
model in a 16× 16× 16 cubic lattice with periodic boundary conditions. They found no long-wavelength propagating
modes. Here is a typical curve they got from their simulation.

FIG. 6 S(q, E) vs E. (a), q = (π/8)(1, 0, 0); (b), q = (π/2)(1, 0, 0); (c), q = π(1, 0, 0). 16× 16× 16 cubic lattice with periodic
boundary conditions. All curves normalized to unite area.

It is evidence that as |q| → 0, the spectral weight becomes increasingly concentrated near E = 0. It is simply
because of the spectral function at q = 0 is a constant of motion, called kinematic slowing down. Even though there
is a clear peak in the spectral function, but, whether it can be identified with long wavelength propagating mode is
not so evident. Is is just an artifact of numerical analysis? There are much left to be done about this question. In a
word,by now, there is as yet no satisfactory theory about the dynamical factor of Heisenberg spin glass, and so with
the spin waves in those systems.

V. CONCLUSION

In conclusion, we have shown in this essay some aspects of the spin glass system, and outlined a unsolved problem
which deserves further investigation. This essay is by no means complete and there are a lot interesting points which
are missing here. Mostly due to the little acquaintance of spin glass of the author. Those who are interest in spin
glass system should consult books by K.H. Fischer and J.A. Hertz entitled Spin Glasses and also there are excellent
review papers on spin glass like K. Binder and A.P.Yang(14) appeared in Reviews of Modern Physics. In the end,
these lines by David Sherrington gives a more comprehensive meaning of spin glass.

Spin glass behavior is not limited to alloy systems, we also encounter this kind of situation in biology, evolution,
organization dynamics, hard-optimization, and environmental and social structures. In consequence, the expression
spin glass has now taken on a wider interpretation to refer to complex glassy behavior arising from a combination
of quenched disorder and competitive interactions or constraints, and to systems exhibiting such behavior. c©David
Sherrington(15)

6 There are still one problem with my code. I haven’t got enough time to debug it. So for the moment, I will simply quote some of the
result obtained in early 1980s.
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