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Abstract. 
 

Vortex matter in high temperature superconductors has many peculiar properties such as melting of the vortex 
lattice, creation of new vortex-liquid phases etc. These effects are not seen in conventional superconductors. This is 
mainly due to the fact that HTc compounds are strongly type two superconductors with Ginzburg-Landau ratio up to 
~110 that makes thermal and quantum fluctuations more profound. Another class of unusual vortex matter 
properties in HTc materials is related to their structural features. Most important are strong layering and structural 
defects such as dislocations and grain boundaries. Moreover structural defects can be introduced artificially 
irradiating samples with high-energy ions. In this term paper I am going to discuss effect of structural defects on 
vortex lattice behavior in particular on vortex lattice pinning. 
 

Introduction. 
 
High-temperature superconductors (HTS) belong to one of the most intensively studied area of 
contemporary condensed matter physics. Not only this is because of still unraveled microscopic 
mechanism of superconductivity but also because of the variety of phenomenological properties 
of these layered and strongly type II superconductors and their possible technological 
applications. Most important of them are related to the behavior of superconductors in the 
presence of the magnetic field and their ability to carry dissipation-free currents.  
As it is well known the magnitude of dissipation-free current in a superconductor cannot exceed 
some critical value cj  which is called critical current density. Currents with density j  greater 

than cj  break up Cooper pairs and destroy superconductivity hence cj  is naturally called 

depairing critical current. Simple estimate for maximal Cooper pair velocity cv  can be obtained 

if we notice that the pair is broken if an electron from it acquires additional energy of the order 
of the energy gap ∆  that leads to the electron’s velocity being changed by Fp/~∆  and hence 

Fc pv /~ ∆ . More accurate value can be obtained from Ginzburg-Landau theory and is given (up 

to a numerical constant) by 
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where oφ  is the flux quantum, λ  and ξ  - penetration depth and coherence length respectively. 

Plugging in typical values of the parameters for YBCO compound which is a common 

representative of HTS materials ( KTc 90≈ ; at T=77K 
O

A2600≈λ , 
O

A35≈ξ ) we get  

 
27 /105~ cmAjc ⋅  at T=77K     (2) 

 

The truth of life is that typical experimental values of cj  are ranging from 24 /101 cmA⋅  in bulk 

YBCO samples to 25 /105 cmA⋅  in thin films which is at least two orders of magnitude less than 
predicted value (2). This means that superconductivity is destroyed not by depairing but by 
another mechanism that “turns on”  much earlier before actual break down of the pairs. The key 
to this mechanism may be the fact that in the growth of samples of HTS materials a large scale 
grain structure can arise with rather large angles of mutual misorientation of the grains both in 
the plane of the layer (ab) and with respect to the direction of the c axis. Here Josephson weak 
links can be formed at the boundaries between the grains, substantially suppressing the  
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superconducting current cj . This model is supported by electron and scanning tunneling 

microscopy observations of YBCO samples. 
As it has been already mentioned there is another class of phenomenological properties of type II 
superconductors which is related to their behavior in the presence of magnetic field. If the 

magnitude of the field is less than some critical value* 2
1 /~ λφocH  then the field is completely 

expelled from the bulk of the superconductor (Meissner phase). Upon increase of the field it 
penetrates into the superconductor in the form of flux lines of the field, surrounded by circular 
superconducting currents decaying on the length λ~ . Such object is called vortex. Each vortex 
carries one flux quantum oφ  of the field and has energy ε  

 

)/ln( ξλεε o= ; 24 )/( πλφε oo =     (3) 

 
per unit length. Superconductivity is suppressed only in the core of the vortex that has 
characteristic size ξ  ( λξ <<  for HTS materials). Vortices interact with each other and form a 
regular lattice with the period  

Ba oo /~ φ       (4) 

 
(exact value of oa  depends on the type of the lattice). Under further increase of the field oa  is 

decreasing and when it becomes ξ~ , i.e. vortex cores starts overlapping, superconductivity 

disappears. This happens when the field reaches value 2
2 /~ ξφocH . 

If an external current density j  is applied to the vortex system the flux lines start to experience 

the Lorentz force Lf  (see fig.1): 

cjf oL /φ=   for single vortex per unit length (5) 
 

As a result the vortex system is moving with velocity V
�

 and finite electric field cVBE /
���

×=  is 

generated. Since both j
�

 and E
�

 run parallel the finite power EjP
��

=  is dissipated in the system. 
Thus, it seems that under application of arbitrary small* magnetic field the technological 
advantage of a superconductor i.e. its ability to sustain dissipation-free current flow is lost. In 

                                                
 
* 1cH  strongly depends on the geometry of the sample. It is maximal for the cylindrically shaped sample with the 

magnetic field applied along the cylinder’s axis (for YBCO 1cH ~100G). For a film with perpendicular magnetic 

field 1cH ~ 0. 



order to recover the desired property the flux lines have to be pinned such that 0=V
�

 even 
though 0≠Lf . In this case the driving Lorentz force is counteracted by the pinning force pinF . 

Fortunately, any static disorder such as grain structure described above will contribute to a finite 
pinning force pinF  and thus reestablish technological usefulness of type II superconductors. 

However, maximal dissipation-free current is determined now by the pinning force pinF  and is 

given by  
BcFj pinc /=       (6) 

 
This depinning critical current is usually at least an order of magnitude less than the depairing 
critical current defined by eq. (1).  
The effects described above take place in any, either conventional or HTS type II 
superconductor. However, due to a special range of parameters, behavior of the vortex system in 
HTS materials is much more richer and allows experimental testing of new theoretical ideas. One 
can name several reasons for this: 
 
--small coherence length ξ , which is only a few times larger than the crystal lattice spacing. This 
makes vortices sensible to the details of the microscopic structure of the crystal lattice and 
introduces the notion of quenched (static) disorder. In HTS materials quenched disorder can be 
created by oxygen vacancies in CuO planes (uncorrelated disorder) and by structural defects of 
the crystal lattice such as dislocations, grain boundaries etc. (correlated disorder) 
 
--importance of thermal fluctuations which is characterized by the Ginzburg number Gi. The 
Ginzburg number is defined as a square of a ratio of the characteristic thermal energy cT  to the 

condensation energy 32 ξcH of the volume of size ξ . Here cH  is thermodynamic critical field 

ξλφ /~ ocH . In conventional superconductors 810−~Gi  while in HTS materials 210−~Gi . 
This allows experimental observation of non- mean-field behavior of the vortex system. 
 
Vortex matter is a very rich and broad subject of modern condensed matter physics* [1]. In this 
term paper I am going to focus only on the simplest, essentially “one-particle”  properties of the 
vortex matter, and discuss their relation to the vortex pinning and to the problem of 
determination of critical currents in HTS materials. We start with the discussion of the 
phenomenological phase diagram of the vortex matter. 
 

Phenomenological phase diagram of the vortex matter. 
 
We consider at first a system of vortices in a homogeneous type II superconductor with no 
driving currents. As has been already mentioned it exists in the region of magnetic fields 
bounded by 1cH  and 2cH  from below and above respectively. Values of these critical fields 
depend on temperature that gives two first-order phase transition lines on the corresponding 
(T,H) phase diagram (fig.2a). The main new result in the description of the vortex system in HTS 
is the appearance of a vortex liquid phase occupying a substantial portion of the phase diagram 
below )(TH c2  and above )(TH c1 . Melting of the vortex lattice in the region of the phase 
diagram close to the upper critical field is caused by increasing thermal fluctuations of the vortex 
position u

�

. To determine the position and the shape of the vortex lattice melting line one uses 

simple Lindemann criterion 222
oL acu >=∆<

�

, where oa  is given by eq. (4) and 4.01.0~ −Lc  is  

                                                
* For example, review [1] has more than two hundred pages and more than six hundreds refrences. 



 
fig2. (adapted from ref. [1]) 

 
the Lindemann number. Considering vortices as non-interacting elastic strings with tension oε  
(eq. (3)) in a thermal bath one gets the following equation for the melting line: 
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The melting of the vortex lattice close to the lower critical field is caused by the weakening of 
the vortex-vortex interaction. With decreasing magnetic field, the distance between the vortices 
increases and eventually grows beyond the penetration depth λ . In this region the vortex-vortex 
interaction is exponentially small and the vortex lattice state is destroyed. As a result, the melting 
line develops the reentrant behavior shown on fig.2b. In homogeneous superconductors the 
width of the vortex-liquid phase close to 1cH  is extremely narrow, of the order of 1G. However 
introducing disorder in the system allows substantial expansion of this phase (see below). 
 
Another interesting region of the vortex matter phase diagram is the regime of critical 
fluctuations (see fig.2b). The width T∆  of this region is determined by the Ginzburg number 

GiTT c~∆ . In spite of the largeness of Gi the width T∆  around the mean field transition line 

)(2 TH c , where fluctuations of the amplitude of the order parameter become relevant, is still 
small and is of the order 1K for YBCO compound. Outside of this region all the fluctuation 
degrees of freedom involve only the phase of the order parameter. Note that )(2 TH c  line now is 
just a crossover line and no longer describes a thermodynamic phase transition. 
 
To study the response of the vortex matter driven by an external current we need to introduce 
disorder. In this way the vortices become pinned and under certain conditions the dissipation-
free current can flow in the system. However, even being pinned, the vortices, subject to thermal 
fluctuations, can still ‘ jump’ from one pinning site to another. This phenomenon is called creep 
and it is made possible by the fact that pinned vortex lattice driven by a current is a metastable 
state of the vortex system. Creep of the vortex lines is equivalent to their small but finite directed 
motion and thus leads to the dissipation that again raises the doubts about existence of ‘ truly 
superconducting’  vortex state. The crucial question here is about existence of creep down to the 
limit of zero driving currents. There are two possibilities: 
1) if the dissipation due to creep and hence the resistivity vanish in the limit 0→j  then in the 
thermodynamic sense the system is able to sustain the superconducting current for exponentially 
long time; 
2) if, however, the dissipation remains finite then the superconducting currents are subject to a 
fast decay.  



In the first case the system is said to be in the vortex-glass state and is characterized by non-

analytic response to the vanishing current µ)/exp(~ jjE c− , where E is electric field developed 

by the system and 0>µ . On the phase diagram of the vortex matter in the presence of driving 
currents and pinning forces the vortex-glass state takes the place of the vortex lattice phase on 
the diagram from fig.2b. 
In the second case the system shows Ohmic behavior and is in general in the liquid phase 
(fig.2b). In the high field regime, close to the superconducting transition line, the vortex liquid is 
essentially free to move (unpinned) and the corresponding regime is called flux flow. In the low 
field regime just above )(1 TH c  the vortex liquid is in the pinned state and the dissipation in the 
system is performed by thermally assisted flux flow.  
 
Thus, the introduction of disorder (pinning forces) in the vortex system has important 
consequences on the vortex matter phase diagram. In the next chapter we are going to review 
nature of the pinning forces in HTS materials. 
 

Pinning of the flux lines. 
 
The elementary pinning forces of individual vortices can be due to various causes: interaction of 
the normal core of the vortex with microscopic cavities in the superconductor, magnetic 
interaction of the vortex currents with their mirror images near the surface of the superconductor 
and with small ferromagnetic particles, due to nonuniformities of the electron’s mean free path 
etc. In most cases pinning energy of the vortex is of the order of the condensation energy 32RH c , 
where R is the characteristic size of the defect.  
 
There is another relevant source of pinning forces in HTS materials. Due to the small coherence 
length ξ  the flux lines become sensitive to the details of the microscopic structure of the crystal 
lattice such as oxygen vacancies (defects) in CuO planes. Each individual defect cannot pin a 
vortex line but collective action of several defects can substantially affect the vortex dynamics. 
This introduces the idea of the collective pinning. When the individual pinning forces acting on 
the vortex line are summed up, the contributions of various defects will add up only randomly, 
i.e. only fluctuations in the density and force of the defects can pin the flux line in a definite 
position. Assuming a density in  of defects acting with an individual force pinf  on the vortex 

line, the total force for a vortex segment of the length L is  
 

LnfF ipinpin ξ≈      (8) 

 
that shows only square-root behavior with the segment length L. On the other hand the Lorentz 
force (5) grows linearly which would imply that, driven by a current, the vortex remains 
unpinned. On the other hand, as the vortex can accommodate itself to the pinning potential by 
elastic deformation, the flux line can bend in order to find most favorable energetic position. The 
bending energy will compete with the pinning energy over some distance cL  determined by the 

condition )()( cpincelastic LL εε ≈ . The vortex then breaks into segments of the length cL , each of 

the segments behaving separately under the action of the Lorentz force. This leads to a finite 
critical current density 

3/22 )/( ococ jj εξγ≈       (9) 
 

where coj  is the depairing critical current given by eq. (1), oε  is the elastic energy of the vortex 

(eq. (3)) and coefficient γ  characterizes the strength of the disorder. The response of the vortex 



system driven by a current and subject to the collective pinning will be essentially the same as 
described at the end of the previous chapter. Weak pinning mechanism of the critical current 
limitation is most probably realized in bulk HTS samples and produces low values of the critical 
current density. 
 
As it has been already mentioned in the Introduction, the magnitude of the critical current 
strongly depends on the sample preparation and reaches its maximal value for the thin film 
samples. This fact is probably related to the presence of a large number of crystal lattice defects 
in epitaxially grown films of HTS materials, in particular in YBCO films, which contain large 
number of edge dislocations oriented both along the c axis and in the ab plane. It is energetically 
favorable for the edge dislocations to align into quasiperiodic chains to compensate elastic 
deformation energy of the crystal lattice. As a result of this, a film separates along its entire 
thickness into a system of single-crystal slightly misoriented grains (blocks). The size of the 
grains can vary from several hundred to several thousands angstroms. The boundaries of the 
grains, composed of edge dislocations, can serve as effective pinning centers for the flux lines. 
To calculate the pinning force acting on a flux line due to the presence of a dislocation we need 
to consider the dislocation structure. In the simplest case the dislocation can be modeled as a 
non-superconducting non-metallic core* with the radius or . The pinning energy of the vortex 
collinear with the dislocation is given then by the following expression: 
 �

−−−= ))(1()()(
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where u�  is the distance between the vortex and the dislocation, pinU  is the pinning potential, ψ  

gives the distribution of the order parameter around the vortex. Corresponding pinning energy 
has a maximum at 0=u : 

22 2/)0( ξεε oopin r−=      (11) 

 
and yields critical current densities comparable with the depairing current [3].  
When the dislocations are aligned in a grain boundary they create highly anisotropic pinning 
potential despite the fact that the contribution of each individual dislocation is isotropic. The 
pinning  potential has a shape of a deep ‘gully’  (fig.3) with longitudinal pinning forces being 
much smaller than the transverse ones. Such  anisotropic pinning forces can  substantially  affect  
 

 
 

fig3. 
                                                
* The physics of dislocations in HTS materials is actually much richer. In particular, it can be shown [2] that elastic 

strain fields around the dislocations can cause local enhancement of the critical temperature cT  
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the vortex matter phase diagram, considered in the previous chapter under the assumption for the 
disorder being uncorrelated and weak. To see how the presence of correlated disorder can be 
reflected on the phase diagram we consider a thin film of type II superconductor in the 
perpendicular magnetic field with the thickness of the film λ<d  that makes unfavorable flux 
line bending. Next, we introduce correlated disorder in the form of a random rectangular grid 
(fig.4a) which models grain boundaries of the actual superconducting samples. The sizes L of the 
grains are described by the distribution function P(L). We also restrict discussion to the magnetic 
field region where the distance between vortices oa  is larger than the average size of the grain 

>< L . Pinning properties of the grain boundaries are specified by the pinning potential pinε  

which is assumed to be localized on the boundary and can be taken from eq. (11).  
Now let’s superimpose a regular vortex lattice with the pinning grid. Each vortex will try to 
adjust its position to minimize the total energy. Displacement x of a vortex is opposed by the 
vortex lattice and will require the energy 2

66xc , where 66c  is the shear modulus of the vortex 
lattice (fig4b.). For this change to be compensated by the pinning energy the vortex should be in 
a stripe of the thickness δ  near the grain boundary. Equating the energies we get  
 

66
2 / cpinεδ = .      (12) 

 
Upon decrease of the magnetic field the shear modulus 66c  goes to zero and hence δ  grows. 

Let’s denote the maximal grain size by maxL . We can see that when the condition maxL>δ  is 
satisfied all vortices in the system are pinned at random places and the vortex system is neither in 
the liquid nor in the solid states. If the field is increased some part of the vortices is released 
from the pinning centers and forms either the vortex liquid or solid according to the phase 
diagram of the previous chapter.  
For an arbitrary value of the field the relative number )(Bn p  of the pinned vortices is given by 

the simple relation [4]: 
2
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We can extract more information about )(Bn p  making only general assumptions about the 

function P(L) and using an expression for the shear modulus in the intermediate range of the 

magnetic fields 2
66 )8/( πλφ Bc o= . This information is summarized on fig.5 

To recover physical significance of the eq.(13) we note that experimentally measured critical 
current density cj  is directly related to the function pn : 

 
)()( 0, BnjBj pBcc ==       (14) 

 
Experimental measurements are in the good agreement with eq. (13, 14) in the intermediate 
range of the magnetic fields. 
 

Conclusions 
 
In this short review we summarized some basic ideas of a relatively new and rapidly developing 
field of condensed matter physics - the vortex matter. Taking as an example YBCO high 
temperature superconductor we analyzed the vortex matter phase diagram and stressed the 
importance of the better understanding of the vortex pinning properties both for theoretical 
developments as well as for possible technological applications. 
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