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Abstract

Photonic crystals are solid materials that exhibit a selective be-
havior towards different modes of electromagnetic radiation. Due to a
high contrast in periodic dielectric constant they can forbid the exis-
tence of light within a certain range of frequencies, called a photonic
bandgap, within their core. In this paper we present some of the
collective phenomena associated with photonic bandgaps, as well as
possible applications and experimental realization of optical devices
that employ these principles.



1 Introduction

Photonic crystals are an exquisite exemplification of fundamental physics at
work towards cutting-edge technological advancement. Over the past two
decades photonic crystals received a lot of attention from physicists around
the globe. They offer a rich field of exploration, both theoretically and ex-
perimentally. While models flourish and provide insight into new venues
of exploitation, fabrication and actual commercialization of derived devices
have posed a considerable challenge but, nevertheless, major steps have been
taken in overcoming it.

Schematically a photonic crystal is a periodic structure whose two main
constituents have different indices of refraction. This contrast represents
the basis for the selective behavior of the crystal towards specific modes of
light. The photonic crystal forbids the existence of electromagnetic radiation
whose energy lies within a range - called photonic bandgap - that depends
on the given configuration, (i.e. the photonic crystal in question and the set
of parameters that define its state - we shall see later that there exists the
possibility of tuning the bandgap without physically changing the sample).

Photonic crystals affect the properties of photons in a similar way that
semiconductors affect the properties of electrons. The photonic bandgap is
the optical analogue of the electronic bandgap in semiconductors. In a semi-
conductor an electron is confined from propagating in any direction in the
lattice if its energy lies within the forbidden range. The factors determining
the energy bandgap are the periodic potential of the atoms and the geometry
of the lattice. In much the same way, in a photonic crystal the periodicity
(or the lattice) is that of the dielectric constants of the constituent media
instead of atoms.

This opens up the possibility of using light instead of the traditional
electronic circuits as the information carrier. Ideally, the emerging technology
would lead to all-optical integrated circuits. A few notable advantages of
photons over electrons are their greater speed when travelling through a
dielectric medium, the amount of information they can carry, and the reduced
energy losses due to their weakly-interacting nature. Photonic crystals are
the ideal candidates for achieving the above goal. While they can be designed
to forbid the existence of light with frequencies within the photonic bandgap
in the interior of the crystal, defects in the lattice can provide a path that
forbidden light can take. The reluctant nature of the photonic crystal will
insure that the photons do not escape this path. Hence defects can lead
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to the localization of light within the gap in the crystal. The properties of
localization depend on the nature and shape of the defects. One can imagine
a microcavity (point defect) that would act like a trap for photons in the
bandgap, a line defect as a waveguide, or a planar defect as a perfect mirror
for the forbidden frequencies.

New phenomena stem from the physics of defects in photonic crystals.
Waveguides provide a unique ability for guiding light along narrow channels
(in air or different media) and around tight bends (a superior feature that
traditional manipulation of photons, based on total internal reflection at the
interface between a high-dielectric propagation medium and a low-dielectric
material, does not posses). Microcavities on the other hand allow for com-
plete tunability in both defect frequency and symmetry, the latter of which
leads to the concept of orbital angular momentum of photons. These types
of defects represent basic ingredients for using photonic crystals to control
the spontaneous emission of atoms in materials. This leads to atom-photon
bound states that exhibit spontaneous symmetry breaking, a quantum op-
tical spin-glass state of impurity two-level atoms, and a Bose-glass state of
photons. We shall take a closer look at these phenomena in the following
sections of this paper.

From a technical point of view, photonic crystals are artificially fabri-
cated. The higher the contrast in the indices of refraction of the constituent
materials, the better is the performance of the crystal. A classical combi-
nation is silica spheres and air (opals). However, it is possible to infiltrate
the crystals with other media and thus produce a variety of materials with
different bandgaps. Ideally, one would like to have a material with a tun-
able bandgap. It has been theoretically predicted (1999) that a liquid crystal
photonic-bandgap material would have such properties. Not surprisingly, last
year a group from Denmark achieved the fabrication of such a system. This
is a fine example of how emergent states of matter blend together to produce
state-of-the-art devices with greatly enhanced performance compared to the
more traditional technologies.
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2 Collective phenomena

2.1 Emergence of photonic bandgaps

The solutions of the macroscopic Maxwell’s equations give a complete de-
scription of the electromagnetic properties of photonic crystals. In the ab-
sence of external currents and sources the governing equation for the magnetic
field is

~∇×
(

1

ε(~r)
~∇× ~Hω(~r)

)
=

(ω

c

)2
~Hω(~r) (1)

where ~Hω(~r) is the magnetic field of the photon with frequency ω, ε(~r) is the
spatially periodic dielectric function, and c is the speed of light. In addition,
~Hω(~r) satisfies the transversality condition ~∇ · ~Hω(~r) = 0. The periodicity
of the dielectric function requires the solution of the Maxwell’s equation to
satisfy the Bloch-Floquet theorem:

~Hω(~r) = ei~k·~r ~Hω,~k(~r)

where ~k is the Bloch vector (crystal momentum) and is restricted to lie

in the first Brillouin zone. ~Hω,~k(~r) denotes the lattice periodic part of the

Bloch function: ~Hω,~k(~r + ~R) = ~Hω,~k(~r) for all lattice vectors ~R. Restricting
the Bloch vector to the first Brillouin zone corresponds to back-folding the
dispersion relation for the infinitely-extended ~k-space therein by translations
through reciprocal lattice vectors. Consequently a set of discrete solutions
(called band structure) emerge; they are indexed by a natural number n

and have a particular wave vector ~k: {[ωn(~k), ~Hn
ω,~k

], ~k ∈ first Brillouin zone,

n ∈ N}. To explicitly solve Eq.(1) the Bloch component of the magnetic field
is expanded in a set of transverse plane waves, leading to a standard hermitian
eigenvalue problem. We illustrate in Fig. 1 two photonic band structures
calculated accordingly. Note the excellent agreement of experimental results
with the theoretical predictions.

Particular dielectric geometries of the photonic crystal lead to a complete
bandgap in the band structure, namely a region of frequencies with no allowed
photon modes for any value of the wave vector ~k inside the first Brillouin
zone.
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Figure 1: Left, photonic band structure for a square lattice of dielectric
(ε = 8.9) rods in air. Transverse magnetic (TM) modes are shown in red and
transverse electric (TE) modes in red. The solid lines are from theory and the
squares represent experimental measurements. Right, photonic band struc-
ture for a triangular lattice of air cylinders in dielectric (ε = 13). Note the
presence of a complete photonic bandgap for both TE and TM polarizations.
In both cases green indicated high-dielectric material.

2.2 Symmetry breaking in photonic crystals

Spontaneous emission is the natural tendency of an excited atom to fall into
a lower energy state by releasing radiation. Due to the discrete nature of
energy levels in the atom, there are well-determined frequencies that the
emitted wave can have. The rate at which the atom decays depends on the
coupling between the atom and the photon, as well as on the density of states
available for the emitted photon. In a photonic crystal both of these factors
can be tuned by changing the properties of the defects introduced in the bulk
of the lattice.

The existence of a photonic bandgap around an atom or a set of atoms
that normally radiate forbidden modes can confine or even suppress sponta-
neous emission and thus lead to the formation of strongly-localized states of
light and photon-atom bound states. The spontaneous emission in this case
has been shown to display an oscillatory behavior due to the strong interac-
tion between the atom and its own localized radiation. This is quite different
from a normal exponential decay occurring in vacuum, and leads to naming
this phenomenon superradiance.

Consider a system of N identical two-level atoms coupled to their radia-
tion field in a three-dimensional periodic lattice, confined to a region smaller
than the wavelength of light, which lies in the vicinity of the bandgap of the
crystal. The Hamiltonian for the interaction is
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H =
∑
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†
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∑
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where Jij =
∑N

k=1 |i〉kk〈j|(i, j = 1, 2) are the collective atomic operators,

aλ and a†λ are the radiation field annihilation and creation operators, ∆λ =
ωλ − ω21 is a detuning of the radiation mode frequency ωλ from the atomic
resonant frequency ω21, and gλ is the atomic field coupling constant.

S. John proposed two models for the superradiance of this system, an
isotropic one that makes use of the Markovian approximation, and an anisotropic
one that employs numerical methods and gives a more accurate description.
However, qualitatively both models render similar results: localized super-
radiance and spontaneous symmetry breaking when the atomic resonance
frequency lies at the edge of photonic bandgap.

To see how spontaneous symmetry occurs in superradiance, a small exter-
nal perturbation is introduced, to the effect of polarizing the atomic system
by an infinitesimal amount. It turns out that this initial polarization of the
atomic dipoles gives rise to a macroscopic polarization in the steady-state
limit t → ∞. This is distinct from the free-space superradiance where the
atomic polarization in this limit is zero. This spontaneous symmetry break-
ing in the atomic polarization field is analogous to lasing without a cavity
mode and hints at the possibility of observing macroscopic quantum coher-
ent superpositions of states. The steady-state atomic polarization also has a
rotating phase whose frequency is proportional to the magnitude of vacuum
Rabi splitting. This spontaneous polarization is analogous to the emergence
of a “superfluid” order parameter for photons.

In an anisotropic three-dimensional photonic bandgap material the col-
lective decay rate of superradiance scales as N2, and consequently the peak
superradiance intensity is proportional to N6. This shows that the super-
radiant emission occurs much faster and outputs a greater power than con-
ventional spontaneous emission. This suggests that lasers operating near a
photonic band edge will exhibit ultrafast modulation and swithching speeds
that would make them an ideal medium for data transfer and computing.

2.3 Optical spin-glass state. Photon Bose-glass state

Let us consider a system of N impurity two-level atoms imbedded in a pho-
tonic crystal as before, with two important differences: the resonant fre-
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quency of the atoms lies well within the photonic bandgap, and the volume
that superradiance is confined to (i.e. the volume of the defect) is larger
than a cubic wavelength. Under these circumstances resonance dipole-dipole
interactions (RDDI) between atoms prevail and can lead to a breaking of the
permutation symmetry of the N -atom wave function. RDDI causes photons
to propagate within the cavity (thus the atoms interchange energy), while
the overall spontaneous emission from the system of N atoms is inhibited by
the photonic crystal.

Employing multiple theoretical methods (the interaction picture, order
parameters in analogy to spin-glass theory, and mean-field approximation)
for the above system, S. John derives a remarkable description of the behav-
ior of the ensemble in the steady-state limit, given certain nonequilibrium
boundary conditions. Numerical simulations of the equations of motion have
confirmed the qualitative picture. The parameters that offer insight into
the evolution of the system are the global polarization density of the whole
atomic system, m(t), and the Edwards-Anderson order parameter that de-
scribes local, spontaneous atomic polarization, q(t). What leads the author
to foreseeing a glass-like state emerging from coherent but random RDDI
is the fact that, although the overall atomic system acquires a steady-state
polarization (quantified by m), its individual phase varies chaotically from
atom to atom. Thus the resulting collective state resembles a quantum spin
glass. On the other hand, the photons interacting with the impurity atoms
tend to a steady state that is the optical analogue of a Bose gas. The fre-
quencies they posses are not unique (they depend on the RDDI), but are
nonetheless restricted by the chemistry of the atoms and the coupling to the
defect in the crystal. Consequently the ensemble light state is intermediate
between incoherent light given off by a thermal source and coherent light
from a conventional laser.

The main result of this analysis is that m(t) has an oscillatory behavior

with a collective time scale factor of N
1
2 and tends to zero in the steady-

state limit while q(t) remains nonzero as t → ∞, justifying the parallel to
spin-glass systems. Moreover, similar behavior is deduced concomitantly for
analogous parameters that describe the cavity mode (the field amplitude mc,
and the Bose-glass order parameter qc). Thus, the cavity mode tends to a
Bose-glass state in the steady-state limit. These results hold true as t →∞
for two different sets of initial states of the system, as illustrated in the graphs
below.
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Figure 2: Macroscopic atomic polarization |m| (dashed-dotted curve), spin
glass order parameter q1/2 (dashed curve), coherent state amplitude |mc|
(solid curve), and Bose-glass order parameter q

1/
c 2 (dotted curve), as a func-

tion of scale time gt for two distinct initial states: atoms excited, defect mode
in vacuum (left); atoms in ground state, photons in defect mode in coherent
state (right).

3 Liquid Crystal Photonic Babdgap Fibers

The localization of light and the controllable inhibition of spontaneous pho-
ton emission from defects in photonic crystals have opened up new venues
for technological applications, particularly in the field of lasing and data
transport. Versatile devices designed on the basis of the fundamental prin-
ciples of photonic crystals (and defects) should offer some flexibility, i.e. the
possibility to tune the photonic bandgap without physically changing the
microstructure of the sample. This could be achieved by infiltrating an air-
dielectric photonic crystal with a medium that has an externally-controllable
index of refraction. Liquid crystals are ideal candidates for this, as their di-
electric constant depends on the orientation of the nematic director n̂(φ, θ),
which can be manipulated thermally.

S. John and K. Busch advanced the idea of a tunable liquid crystal pho-
tonic band gap material and developed a theoretical model that also offered
considerable insight into the fabrication of such a material. The model shows
how a complete photonic bandgap arises at a particular orientation of the di-
rector of the liquid crystal; the width of the bandgap changes subsequently, as
n̂ is rotated, because different high symmetry points in the Brillouin zone are
affected unequally. We illustrate these effects in Fig. 3 for a silicon inverted
opal infiltrated with the nematic liquid crystal (BEHA).

Combining this idea with existent photonic bandgap materials technol-
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Figure 3: Photonic bandgap size (left) and total photon density of states
(right) vs. orientation of the nematic director n̂(φ, θ) for a fixed angle φ =
π/4. Note that the photonic bandgap is closed for θ = 0 and reaches a
maximum value ∆ω/ωc ' 1.6% relative to its center frequency ωc for n̂ =
(1, 1, 1)/

√
3.

ogy, specifically photonic crystal fibers that act as optical waveguides, T.T.
Larsen et.at designed and fabricated liquid crystal photonic bandgap fibers. A
pictorial comparison between the “theoretical view” and the “experimental
realization” is shown in Fig. 4.

Apart from behaving as predicted by theory (the sensitivity of the bandgap
location was found to be 3nm/0C for infrared light, and 1nm/0C for visible
wavelengths below the cholesteric to isotropic phase transition temperature
Tc = 940C), the new devices brought to light a quite dramatic effect when
operated at the phase-transition temperatures of the liquid crystal. The
dominant bandgap evolved from green to yellow, then to an off state (due
to the highly scattering behavior of the liquid crystal at the phase transition
that causes the molecules to dis-align), and ultimately to blue, as shown in
Fig. 5.

It has thus been demonstrated both theoretically and experimentally that
it is possible to obtain tuneable light localization in a photonic crystal by
infiltrating it with a liquid crystals. The spectral characteristics of the fiber
obtained this way depend on the original photonic crystal fiber and the align-
ment and optical properties of the liquid crystal. These results open up the
possibility of designing advanced all-optical signal processing devices on a
small scale.
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Figure 4: Left, opal structure - by adding patterns of liquid crystal, one can
program transmission properties. Right, liquid crystal photonic crystal fiber
supporting a blue mode.

4 Conclusion

We have exemplified how photonic crystals provide a rich field of study from
two viewpoints. Firstly, new phenomena and states of matter arise from fun-
damental principles applied to photonic bandgap materials (controlled spon-
taneous emission, localization of light, atom-photon bound states, glass-like
states of both atoms and photons). Secondly, as a consequence of these novel
manifestations, (controllable) defects in photonic crystals allow the program-
ming of these processes, thus providing a highly-efficient way of moulding the
flow of light, and even tuning the forbidden modes.
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Figure 5: Micrographs of guided modes in a liquid crystal photonic bandgap
fiber. (a) green at 770C, (b) yellow at 890C, (c) off state at 910C, (d) blue at
Tc = 940C.
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