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Abstract

The basic dynamical equations for incompressible fluid flow (the
Navier-Stokes equations) are known for the last one and a half cen-
turies. Yet a detailed understanding of flow at high velocities (Reynolds
numbers) remains elusive. The basic assumptions of the ”classical”
theory due to Kolmogorov is not beyond question. Here I will intro-
duce basic questions related to the problem of turbulence, discuss on
Kolmogorov’s theory of turbulence and report briefly and selectively
on the work that has been done after that.
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1 Introduction: What is turbulence?

There is an apocryphal anecdote that has been related of more than one
scientist, but should probably be attributed to Heisenberg. When asked
what he would ask God if given an opportunity, he supposedly said that he
would ask two questions ”Why relativity? And why turbulence? 1 really
believe he will have an answer for the first.” Indeed in the eyes of many
the problem of fluid turbulence remains the last great unsolved problem in
classical physics. The complexity of the problem can be gauged from the fact
that even mere characterisation is non trivial. But before proceeding let us
have a look at what is universally believed to be the 'microscopic’ equations
for the phenomenon.

The dynamical flow of most liquids and also some gases to a large degree
of accuracy seem to obey the Navier-Stokes equations. Here I will consider
only these so called Newtonian fluids were it is assumed that the stresses are
proportional strains, and that the strains are given by the velocity gradients
(as opposed to the displacement gradients as in solids). Also one believes
that it is reasonable to treat the fluid bulk as a continuum, since the smallest
length scales of flow are much larger than the intermolecular distances. At
least for flows with velocities less than the speed of sound in the medium,
this approximation has no reason to run into trouble. Thus the theory is
analogous to the theory of elasticity for solids. We make the further simpli-
fying assumptions that the fluid is incompressible, i.e. density, p = constant,
and that the temperature gradient across the fluid body is negligible!. With
the above assumptions the Navier-Stokes equations take the following form,
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It is supplemented by the continuity equation,
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Here 7;(x,t) and p(x, t) represent the ¢ th Cartesian component of the veloc-
ity field and the pressure at position x and time ¢ respectively. Also v is the
so called kinematic viscosity. The NS equations are merely a restatement

!These assumptions are reasonable when the typical velocities in the fluid are much
less compared to the velocity of sound in the fluid



of Newton’s second law for fluid systems, with additional internal friction
which is assumed to obey Newton’s hypothesis of viscosity. Often one de-
rives these equations semi-rigorously from collisional gas dynamics, but one
must remember that that represents a very special case of dilute systems;
the realm of validity of the NS equations is much wider than those of its
"derivations’. It is interesting to note that one can derive these equations
from very general symmetry arguments and the assumption that the only
important quantities in a fluid are the velocity field v and the pressure head
p- One more important point to note is that if one agrees to measure velocity
and length in the units of some typical length L and velocity V' of the system
then the flow, at least sufficiently far form the boundary, will depend only
on a dimensionless parameter

R=— (3)
R is called the Reynolds number for the system. Now when R is small,
the typical velocities for the system are small, which implies that the non
linear term in the equations becomes small compared to the other terms.
For such cases it is sensible to characterise the flows in terms of stable,
stationary slowly varying flows. Such flows are called laminar flows. The
auto correlation function of the velocity over time (when suitably scaled) is of
the order unity. Such flows are rarely seen unless under carefully constructed
conditions. Now if one starts increasing the Reynolds number, then the
smooth stationary flow starts breaking up. The velocity at each point starts
showing time dependence. On further increasing the Reynolds number, one
goes through a regime when the velocity field shows bursts of very rapid time
variation seperated by periods of very little or no time dependence. This
phenomenon is called intermittency. Finally at extremely large Reynolds
number the velocity field (apparently) loses all correlation over any finite
interval of time. It becomes practically random. This phase is the the so
called fully developed turbulence. A set of cartoons for the above mentioned
changes with increasing Reynolds number is shown in Fig.1. A word of
caution: the picture sketched above is schematic and emperical and the actual
evolution of a system with increasing Reynolds number is heavily system
dependent. For example, similar experiments when performed in a liquid
placed in the region between rotating concentric cylinders leads to the so
called Taylor-Couette flow. The sequence of events in that case are analogous



but the spatial flow patterns are dissimilar to the one shown in the figure.

2 Major questions related to turbulence

There are a few broad questions which need to be addressed. Firstly, what is
the path taken by the system to turbulence? How much of it is global? Or,
what is more appropriate, are there any global features? The uniqueness or
smoothness of solutions for the NS equations for arbitary time has not been
established. As such it is unclear whether the transtion to turbulence is due to
the change of stability of one branch of the solutions to another, or is it merely
due to the evolution of the same branch of the solutions with increasing
Reynolds number, i.e. is turbulence a new state of the fluid system which is
absent below a certain critical Reynolds number or is it a natural evolution
of the same state. In case the former is true one should like to know how this
critical Reynolds number depends on the flow geometry etc. Indications are
that if the former is indeed true (i.e. if there indeed exists a critical Reynolds
number) then it is critically dependent on the characteristics of the system.
It has been shown experimentally that under sufficiently careful conditions
the onset of fully developed turbulence with increasing Reynolds number can
be delayed to a large extent.

The last observation brings us to the next important category of ques-
tions. Is turbulence indeed a characteristic of the NS equations or is it merely
the effect of the randomnessof the boundary conditions or other other exter-
nal conditions?. Attempts so far to derive turbulence from the NS equations
in three dimensions, have not been remotely successful so far. However other
approaches have been tried. One approach is to assume that the description
of turbulence should be done at a level higher than the description of the
system offered in the NS equations. An example will make the situation
clearer. The NS equations describe a wide class of fluids. As mentioned ear-
lier, one can derive them form molecular dynamics. However that is not the
whole story. The NS can also be derived using a variety of other microscopic
dynamics, viz. cellular automata etc. In practice the NS equations are just a
statement about the symmetries of the (fluid) system, which is (in the contin-

2Tt is well known that turbulence cannot be sustained in an isolated system, since the
fluid system is inherently dissipative. One needs to provide an external driving force to
sustain turbulence.The randomness in this force, amplified by the nonlinear couplings of
the NS equations may be the cause of turbulence itself.



uum limit) quite independent of the microscopic dynamics of the system up
to a finite number of experimantally determined parameters. Indeed the NS
equations are in a sense more global then the specific microscopic dynamics.
Now using an analogous string of arguments one can say that turbulence is
a global phenomenon of which the NS equation is just one microscopic de-
scription. In principle one can construct other such microscopic descriptions
which will give turbulence. The global features of turbulence, if any, should
not depend on the details of the microscopics. Several such turbulence mod-
els have been attempted. Here as an example, I will consider a simple one
dimensional model due to Bass [15].
Let us consider the Burgers equation given by?,
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This equation can be transformed into a linear (heat transfer) equation
by making the following transformation
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Obviously, the solutions to this equation can be constructed from plane waves
and with proper choice of coefficients one can construct u from 5 which will
be smooth, bounded and with finite autocorrelation over arbitarily long time
intervals. Let us call these solutions normal. For certain initial and boundary
conditions the system will admit these solutions. However now consider
a function Y(¢) constructed in the following manner. For ¢ < 0, Y (¢) is
identically zero. When ¢ > 0 Y'(¢) can be either 1 or -1, and it changes from
one value to the other arbitarily *. In that case it is easy to see that the

3This equation has no term analogous to the pressure. It was modeled to give insight
about the turbulence in an one dinemsional fluid ”which is infinitely compressible, and
which is endowed with a cooling mechanism such that the temperature term always remains
zero[15].”

Tt is interesting to note that Bass is reluctant to attribute this arbitariness to sta-
tistical randomness. But as pointed out by Burgers in the discussion in the end, it is



autocorrelation function for Y (¢) defined as
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One can show that Burgers equation has continuous and derivable solu-
tions of the form
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where ¢ is a square integrable function of its first argument. Let us call
these kinds of solutions anomalous. Evidently the autocorrelation function
for u vanishes after a finite time. Now one can in principle construct initial
and boundary conditions for which the system will admit these anomalous
solutions. If one identifies this with a one dimensional fluid then one can
see that it indeed does lead to turbulence, if defined by the autocorrelation
functions.

This construction is a very simple example of a turbulence model, but
it has many of the generic features of the latter. Often there is implicit or
explicit reduction of dimensions. While this approach may manage to capture
the some of the essential physics, it should be remembered that turbulence is
the response of a system consisting of many degrees of freedom to very strong
self coupling and possibly coupling with external sources. Also a turbulent
flow is characterised by very rapid evolution of eddies of different sizes. Now
this is not possible in any dimension less than three. Moreover it is likely
that with mere simplification a loss of essential physics may be unavoidable.

The last important category of problems connected to turbulence relates
to the characterisation of fully developed turbulence. In the next section I
will discuss certain aspects of it.

3 Fully developed turbulence

The turbulent regime is emperically characterised by rapid time evolution
over a large range of length scales. Hence an initial value problem approach

difficult to visulise a situation other than ensemble averaging which will give rise to such
an arbitariness.



seems hopeless. On the other hand a stochastic treatment is likely to be
more profitable. To that end separate the mean and the fluctuating parts of
the fluid variables.

p=P+p (9)

The upper case variable on the right hand sides of both equations represent
the averaged quantities and the lower case variables represent the correspond-
ing fluctuations. The averages indicated here are ensemble averages, but from
the ergodic hypothesis they will be equal to the time averages over a long
enough time®. By definition the averages of u; and p are identically zero.

One can in principle write down equations for the averaged quantities
by taking an average over the Navier-Stokes equations and also keeping in
mind that the continuity condition is seperately obeyed by the mean and
the fluctuations of the velocity. However it is easy to see that this equation
will contain terms like (u;u;) (which is in general non zero)where (...) imply
ensemble average.

Again it is possible to write equations for (w;u;), and for that matter
(ujujug) and so on by taking the appropriate moments of the NS equation
and averaging. But a moments look will convince one that the equation
for each such averaged moment involves a higher order moment. Thus this
system of equations (infinite in number) runs into serious closure problems,
to which no satisfactory solution has yet been found except certain ad hoc
truncations of moments higher than a certain order to force closure.

4 The Kolmogorov hypothesis

Evidently the NS equations despite of being complete by themselves do not al-
low for much predictability by the sheer magnitude of its complexity. One re-
alises that some new input about the nature of turbulence is required to make
any progress. Arguably the first such attempt was made by Kolmogorov([1, 3],
and his hypothesis has ever since served as the benchmark for all other at-
tempts to follow.

5The definition of an ensemble is far form simple in this case. Neither is the invocation
of the ergodic hypothesis free from debate. However I will be content with just stating
this problem.



To motivate the Kolmogorov hypothesis let us define a new quantity
Rij = <vi (Xa t)a Uj (X +r, t)) (10)

i.e. the equal time two point velocity correlation function. (Henceforth we
will supress the dependence on time.) The first assumption that we make
is that the above defined correlation function is isotropic and homogenous.
This should be a reasonably good approximation in the region of the fluid
which is far from any material boundary. From now on we will concentrate
on this idealised region only. It is easy to see that with those approximations
and the incompressibility condition,

Rij = Rij(r) = A(r)rirj + B(r)di; (11)
Now let us take the Fourier transform of R;;
Dij(k) = —— / Rijedr (12)
(2m)?
This means

From the incompressibility condition
kiDi; = k;D;; =0 (14)
we get,
F(k) = E(k)k? (15)

Hence with these simplifying assumptions were are left with the job of de-
termining only one scalar function. The physical significance of this function
can be seen from the following relation

) = SRa(0)
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This means one should regard E(k) as the energy spectrum of isotropic,



homogenous turbulence. Due to the presence of the dissipative viscosity
term, turbulence in an isolated system is not sustained. There has to be an
external energy source to keep it alive. Assume that this source feeds energy
to the system at a length scale of L and a velocity scale of V. Thus the
largest scale Reynolds number of the system is
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Let the source supply energy at a rate of e. Kolmogorov put forward the
following hypothesis. He postulated that this energy is transmitted to this
highest length scale to successively lower length scales, and dissipated only at
the lowest allowed length (I;) and velocity (vg4)scale in the system, determined
by the molecular dynamics of the system.This is identified as the scale where
the Reynolds number becomes of order unity.

ld’l)d ~ vV (18)

Kolmogorov also postulated that one should be able to write € only in terms
of the typical length(l) and velocity(v) scale associated with any intermediate
eddy. From dimensional grounds, the only way to do this is

e~ (19)

Since this is true for the highest and the lowest length scales,

L

o~ R3/ (20)
Uzd ~ RY* (21)

Now considering the spectrum we can easily see that a higher and a lower
cutoff wavenumber will be introduced by the lowest and the highest length-
scale in the problem. In the intermediate region, sufficiently far away from
either of the cutoffs (this regime is called the inertial range), we can again
write from dimensional arguments,

E(k) = CePk/3 (22)



Where C is a dimensional number with only possible dependence on the
largest scale Reynolds number of the system (R). Again Kolmogorov pre-
dicted that for sufficiently large Reynolds numbers, C' becomes independent
of R. In practice this is a statement postulating the existence of the limit
C(R) for R — oo. With this qualification of existence of limit, the last equa-
tion is the famous Kolmogorov five-thirds scaling law for the inertial range
Fig.2.

5 Further considerations

Looking at the apparent crudeness of the approximations which goes into
the derivation of the scaling law, its corroboration by experiments have been
good enough, if one agrees to view only the rought general trends. The
goodness of its exact fit with the expertimental data points is is not very
clear, because the data contains considerable scatter. Sreevasan has done
a detailed analysis of the available data for grid generated turbulence[2]. I
will reproduce his results in Fig.3. The results in this graph show that the
Kolmogorov constant is not universal. However a systemetic set of experi-
ments for a single flow geometry are yet to be done.[7] The last assumption
in Kolmogorov’s hypothesis has been the topic of much debate. In fact, as
first pointed out by Landau, it is highly unlikely that averaging the rate of
energy transfer (cascade) across nonuniversal large scales will not give rise
to any spatial structure. There have been a number of attempts to come
up with a suitable modified hypothesis or at least with a better and more
complete understanding of the underlying phenomena. Kolmogorov himself
had comeup with two further refinements to the so called K41 hypothesis.
Here as a prototype example I will reproduce the analysis of Goldenfeld and
Barenblatt [7, 8, 9]. Firstly,it should be noted that the five-thirds scaling
law also presupposes an implicit asymptotic constant nonzero limit of C' as
kL — oo , because in principle C' can as well be a function of kL. How-
ever it can be argued that C' can depend on R only through In R and on &
only through kL. The latter is easy to see, the former can be understood
intuitively in the following manner. The Reynolds number for a flow is not
a perfectly well defined quantity. One can in principle define more than one
Reynolds number for the same flow differing at the most by factors of or-
der unity, or stated otherwise one can redefine the Reynolds number upto
a factor of order unity for the same physical flow. However this should not



change the flow variables, in particular, the correlation function D;;, at least
not upto the the leading order for R — oo. A little thought will convince
one that in that case the leading dependence on R can only be through In R.
In fact this result can also be interpreted as a statement of weak dependence
of the spatial flow properties on a less than well defined parameter. A fairly
general functional form for C which the authors consider is

C(R,kL) = A(In R)(kL)*"®) (23)

Now A and « can be conveniently expanded in the small parameter g = %.
If it is assumed that the leading constant terms are non zero then one gets
back the Kolmogorov hypothesis. However when the leading term is assumed
to be linear in 3 then as expected one obtains a family of curves in the D;;
vs kL space, parametrised by R. The envelope of this family is universal,
although the individual members are not.

The above example is instructive for the following reason. The Kol-
mogorov hypothesis for turbulence is analogous to the Landau theory critical
phenomena, in the sense that both are mean field theories. It is known that
the Landau theory gives quantitatively incorrect results for most systems
undergoing phase transitions. However that is not unexpected. The Landau
theory does not take into account the fluctuations which become important
near phase transitions. But the importance of Landau theory lies not in
precise quantitative predictions, but in the fact that it allowss one to iden-
tify the gross macroscopic quantities in the system from (mostly) symmetry
considerations only. It provides a completely different top-down approach as
opposed to the standard bottom-up approach. Similar considerations should
possibly apply to the Kolmogorov hypothesis of 1941.

6 Turbululence and critical phenomena

The discussion at the end of the last section brings one to the interesting
analogies that can be drawn between turbulence and critical phenomena.
Whether this analogy has any physical meaning or whether it is merely for-
mal, is unclear. As briefly discussed previously, it is not obvious if turbulence
is indeed a new emergent state in statistical equilibrium, in which case one
should talk about the (phase) transition from laminar flow to turbulent flow,
or is it merely a smooth evolution or crossover from laminar flow.
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However, regardless of the underlying physics, the application of the ma-
chinery developed for studying critical phenomena towards analysing the
problem of turbulence has enough computational merit. In particular,the fu-
ture for the application of renormalisation group techniques seem promising.
However so far efforts towards the above generalisation have proved to be
non trivial and is running into their share of complications.

The discussion of RG in turbulence to any depth is beyond the scope
of this report; I will simply state some of the formal analogies that exists
between critical phenomena and turbulent flow®. To this end, the first im-
portant thing is to notice that spatial separation (r) in systems undergoing
critical phenomena is analogous to wavenumber (k) in the case of turbu-
lence. Most of the other analogies follow from this observation. The length
scale of energy insertion (L), the length scale of energy dissipation(l;) and
the velocity correlation function (R;;) in turbulence are respectively anal-
ogous to inverse lattice spacing, inverse correlation length and the Fourier
transform of the one particle Greens function in systems undergoing critical
phenomena[4]. Other identifications which may not be immediately evident
can be made as well. The viscosity (v), the so called intermittency exponent
() and the mean rate of dissipation of energy (e€) are similarly analogous to
temperature’, correlation exponent and stiffness® respectively[10].

7 Conclusions

In this report I have given a simple, perhaps simplistic, account of the prob-
lem of turbulence. Almost no technical details have been given due to lack of
space and necessity (and in most cases due to the rather limited knowledge
of the author). In some cases this may have resulted in the loss of clarity, as
I have, more often than not, merely mentioned pieces of information without
discussing them. The problem of turbulence has entered the new millenium

6In such calculations one thinks of the fluid system as undergoing two phase transitions
when the Reynolds number is increased[13] . The first being a transition from laminar
flow to turbulent flow and the second from turbulent flow to fully developed turbulence.
The latter defined as one for which a statistical description is meaningful.

"Rather to the temperature difference from its critical value 4.e.T —T,. However, I think
it may be more appropriate if one draws an analogy between the Reynolds number (R) and
the scaled temperature difference T;T‘:, since these are the only important dimensionless
parameters in the respective systemsc

8only for lattice spin-systems
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as probably the only standing unsolved problem in classical physics. Im-
mense amount of literature in physics, mathematics as well as engineering
has been devoted to its analysis. I have not even attempted to do justice
to the impossible task of mentioning all of them. However, I hope, I have
atleast been able to present the major questions that need to be asked (in
my view), when one addresses the problem of turbulence in fluids from the
perspective of a physicist.
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Figure 1: Fluid flow in a cylinder. Schematic of the streamlines with increas-
ing Reynolds number.
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Figure 3: Compensated one dimensional spectral density plotted against
wavenumber for one grid-generated turbulence. The three dimensional spec-
tral density is given by E(k) = kQ%% — k%,f. The relatively small flat region
near at low Reynolds numbers yields the Kolmogorov constant. [2]
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