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Abstract When describing the early universe as an FRW metric and being filled
with perfect fluids, there is no first principle understanding of structure formation.
Instead, at high temperatures one must describe the matter as a quantum field
theory. As the universe expands, this field theory will undergo phase transitions, and
the possibility for topological defects arise. This paper will discuss how topological
defects form, and their role in structure formation in the early universe, focusing on
cosmic strings.



1 Introduction

There are many goals of modern cosmology, including, understanding mechanisms
leading to inflation, understanding the origins of dark matter and energy, and un-
derstaning the origin of structure formation. In this paper we will review attempts
to account for the last of these through topological defects.

The early universe was a very energetic place. At such high energies one expects
particle physics to be important. The standard model of particle physics is described
by a non-Abelian gauge theory, with gauge group SU(3)×SU(2)×U(1). This theory
is assumed to undergo a phase transition near at the electro-weak scale resulting
in the QED dominated ”real world” we see at visible energy scales. This phase
transition is thought to proceed via the usual Higgs mechanism.

While the interactions are classically scale independent, the coupling constants
receive logarithmic quantum corrections. At energies on the order of 1016GeV these
couplings are approximately equal. This is suggestive that new physics occurs at
this scale. One usually studies larger grand unified theories (GUT’s) which may
be broken to the standard model via a second Higgs mechanism at the GUT scale,
assumed to be 1016GeV. Beyond this scale the physics is assumed to be governed by
a unified gauge theory, which may or may not be the low energy effective description
of another field or string theory. Typical GUT theories are based upon SU(5) or
SO(10) gauge theory.

Associated with phase transitions is the possibility of topological defect forma-
tion. The Kibble mechanism tells us that if a defect is allowed to form, it will
develop in the early universe. These defects possess energy and will interact grav-
itationally at the very least. The objects may then provide the early seeds for
structure formation in the early universe.

This paper will begin with a lightning review of the standard model of cosmology
and inflation. In section three defects allowed in the simplest extensions of the
standard model of particle physics are discussed. In section four the implication of
these defects on structure formation is discussed.

2 The Standard Model of Cosmology and Infla-

tion

2.1 Standard Model of Cosmology

From astrophysical observations we note that on scales beyond 100 Mpc there does
not seem to be any additional structure formation. Also, the cosmic microwave
background (CMB) is consistent with a spatially flat universe, possessing density
perturbations δρ

ρ
∼ 10−5. [1] The solution of Einstein’s equations consistent with a
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homogeneous, isotropic universe is the Friedmann-Robertson-Walker metric,

ds2 = dt2 − a2(t)

(
dr2

(1− kr2)
1
2

+ r2dΩ2

)
. (1)

k = −1 → Closed

k = 0 → Flat

k = 1 → Open

We may characterize the light observed from distant objects by their redshift.

z + 1 ≡ λo

λe

(2)

Here λo and λe are the observed and emitted wavelengths of light. The FRW metric
then implies,

z ' H(to)dl. (3)

The Hubble parameter, H(t) is defined to equal ȧ
a
. dl is the spatial distance between

two points, determined by the metric.[2]
The physics in this universe is presumed to be governed by the Einstein-Hilbert

action augmented by a matter action. The Euler lagrange equation for the metric

2√
g

δStot

δgµν

= 0

→ Rµν − 1

2
Rgµν = 8πGTM

µν (4)

and energy momentum conservation,

∇µ(TGR
µν + TM

µν ) = 0. (5)

If we define the matter density, ρ = TM
00 and p = 1

3

∑
i T

M
ii we find,

(
ȧ

a

)2

− k

a2
=

8πG

3
ρ (6)

ä

a
=

4πG

3
(ρ + 3p) (7)

Depending on the equation of state, different forms of energy scale differently
with time. For radiation we have p = 1

3
ρ and

ρrad ∝ a(t)−4. (8)
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Figure 1: Angular decomposition of the CMB temperature correlations into mo-
ments l.[3]

For non-relativistic matter we have p = 0 and

ρmat ∝ a−3. (9)

For vacuum energies of a quantum field we have p = −ρ and

ρvac = const. (10)

At a temperature of tc = 1000K, the photons and charged matter fall out of
thermal equilibrium. This is characterized by the formation of hydrogen and the
release of photons. These photons then have a blackbody distribution characterized
by the combination temperature, tc. If there are density perturbations in the universe
the photons will experience the variations as potential wells. This will lead to
variations in the thermal distribution. We have δρ ∝ δE = kBδT and

δT

T
∝ δρ

ρ
. (11)

Observationally it is found δT
T
∼ 10−5.[1]

2.2 Inflation

The cosmology described by the FRW metric several difficulties, two of which are
the flatness and horizon problems. The universe is observed to be nearly flat. An
analysis of the FRW equations of motion show that a flat metric is not a stable
solution. In order to achieve the current nearly flat universe one must accept a high
amount of fine tuning. The second problem is that the observed CMB spectrum is
uniform across scales the FRW metric says were never in causal contact. This again
causes an unreasonable degree of fine tuning in the initial conditions of the universe.

An accepted explanation of these observations is to postulate that the early
universe underwent an inflationary phase characterized by exponential growth. This
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will account for the observed observations. The exponential growth pushes the
universe towards flatness regardless of initial conditions. The horizon problem is
solved because separated points were in causal contact in the pre-inflationary phase.
During the inflation, the points fall out of causal contact. The evolution proceeds
according to the FRW metric after the inflationary phase.

One mechanism to generate this inflationary phase is a phase transition [4]. One
postulates that the physics of the early universe contained a scalar field, whose
potential is invariant under a symmetry. At a critical temperature the theory is
assumed to undergo a first or second order phase transition. In the case of a second
order phase transition, a tachyonic mode develops driving the field away from the
peak of the potential. as the field rolls away from the peak it radiates energy which
drives inflationary growth. The inflationary phase is assumed to end when the field
reaches its minimum. The expectation value of the field 〈φ〉 is only expected to
be coherent over some coherence length. This length typically varies inversely with
the coupling constant of the field and the position of the potential minimum in the
broken phase [4].

If the phase transition is a first order transition, on imagines an unbroken phase
where the field has a zero expectation value. Below some critical temperature the
minimum of the potential discontinuously shifts to some non-zero field value. There
is a barrier which, classically, traps the field in a metastable state. Quantum me-
chanically, the field can tunnel through the barrier. The scalar field will settle into
the minimum, releasing energy into the other degrees of freedom of the theory. Here
the inflation is driven by the vacuum energy of the field resting in the metastable
state. The inflation proceeds for a time set by the tunnelling decay rate. This is set
by the size of the potential barrier.

3 Phase Transitions in Particle Physics

 

Figure 2: The unification of the MSSM coupling constants. [3]
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In the standard model there are two phase transitions. At the electro-weak scale,
the SU(2) × U(1) is broken to the observed U(1) of electricity and magnetism.
In addition, at energies near .2GeV hadronization occurs. This is the transition
where individual quarks are no longer seen, being bound into composite mesons and
nucleons. As mentioned in the introduction, the unification of the coupling constants
is suggestive that at energies near 1016GeV another phase transition occurs. Further,
if one assumes the minimal supersymmetric standard model the coupling constants
meet exactly.

The usual Higgs mechanism leads to a first order phase transitions, proceeding
via nucleation and bubble formation. [5] Depending upon the internal symmetry
group, there is the possibility of defect formation. When bubble formation begins,
regions of the ”true vacuum” form in a sea of false vacua. These bubbles expand
and the local field attempts to align with the true vacuum so as to minimize the
energy of the system. In some cases only ”large” fluctuations can lower the energy
of the system, the system will then contain defects whose lifetime is determined by
the probability of a ”large” fluctuation.

 

Figure 3: The first order Higgs phase transition.[6]

The Kibble mechanism is a concrete realization of spontaneous symmetry break-
ing in the early universe. One begins with a Lagrangian possessing a symmetry and
a temperature effective potential. Above a critical temperature, Tc, the expectation
value for the Higgs field vanishes. Below Tc, the minima degenerate. The field will
”choose” one of the minima. At temperatures below the Ginsburg temperature,
TG, thermal fluctuation are insufficient to change the minima and the defects are
effectively ”frozen out.” [7] This mechanism ensures that if the gauge theory allows
defects to form, they will in the early universe.

3.1 Classifying Defects

A system’s ability to form topological defects reduces to the mathematical study of
homotopy. We may define the ”vacuum” manifold M. For a theory with symmetric
phase symmetry group G and broken phase symmetry groupH, the vacuum manifold
is M ≡ G/H. The allowed defects correspond to the nontrivial homotopy classes
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of M. Two maps φ0 and φ1 are homotopically equivalent, φ0 ∼ φ1, if there is a
continuous one parameter family of maps connecting them:

φ(t) : Sn → M; t ε [0, 1]

φ(0) = φ0 φ(1) = φ1. (12)

The n’th homotopy group is the set of n’th equivalence classes, πn(M). This is only
a group for n 6= 0.[4][8]

For low n we give names for the πn.

n = 1 → domain wall

n = 2 → string

n = 3 → monopole

(13)

Defects arise in two varieties local or global. This depends on whether the broken
symmetry is gauged or not. Gauge defects are characterized by the existence of a
core.

The gauge group of the standard model, SU(3)× SU(2)× U(1), does not allow
stable defects. However, the popular GUT groups, SU(5) and SO(10), do allow for
defects. For SU(5),

π2(M) = π1(U(1)) = Z. (14)

For SO(10) one typically proceeds via two symmetry breakings,

SO(10) → SU(5)× Z → (SU(3)× SU(2)× U(1))× Z. (15)

This breaking will pickup an additional π1(M) = Z2. [4]

3.2 Examples of Defects

For domain walls, n = 1, the vacuum manifold is a discrete set of points, cor-
responding to different lowest energy vacuum field configurations. For global de-
fects,the spatial sections of the space-time manifold possesses domains of differing
field values. A Lagrangian possessing a domain wall solution is

L =
1

2
∂µφ∂µ − λ

4
(φ2 − η2)2 (16)

The boundaries between the domains of vacuum energy are called domain walls.
Because the field does not take on a vacuum value along the wall, the domain wall
solution costs energy. The typical size of a domain wall is ∼ (λ1/2η)−1. The energy
is ∼ λη4. This leads to a surface energy σ ∼ λ1/2η3.
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An example of a string defect is given by a complex scalar field coupled to a
U(1) gauge field.

L = |Dµφ|2 − V (φ)− 1

4
FµνF

µν

V =
λ

2
(|φ|2 − η2/2)2 (17)

This is the famous ”Mexican hat” potential. It is easy to see that M = S1. As
we are looking for field configurations which are maps S2 → S1, we may look for z
independent solutions. Thinking of S2 as C+ {∞}, we may write down asymptotic
solutions [8],

φ =
η√
2
f(mvr)e

inφ, Ai =
n

er
ϕ̂ia(mvr). (18)

Here f and a have the large r behavior

f ' 1− f1(mvr)
−1/2e

−
√

λ
e2

(mvr)
a ' 1− a1(mvr)

1/2e−mvr. (19)

In these expressions mv is the low energy mass of the vector field, eη. The magnetic
flux, through surfaces in the x − y axis including the origin, is quantized in units
of inverse electric charge. This solution demonstrates a general feature of gauge
defects, we may generally expects a core of vanishing scalar field. The existence of
a core indicates that the defect is stable, or topological. The width of the defect is
w ∼ η−1λ−

1
2 . The energy per unit length scales as µ ∼ η2. This is not the whole

story, though. The solution above is for a single string. Strings are allowed to
interact both with themselves and other strings, creating new strings.

Monopoles are characterized by point-like cores and quantized winding numbers.
The field monopole solutions vanish at spatial infinity. Since these have cores, they
are topologically stable. The mass of a monopole is proportional to η. [7]

4 Defect Induced Structure formation

One our best tools for studying the early universe is the cosmic microwave back-
ground. The is the electromagnetic radiation released in the recombination phase
of cosmic evolution. This is the era when protons and electrons combined to form
hydrogen. This occurred at a temperature near 3000 K, or when the universe was
about 100,000 years old. This era is the earliest we can hope to probe with electro-
magnetic radiation. Before recombination the universe was opaque to photons,
being a soup of charged particles. It is observed that this background is very nearly
blackbody. The temperature variations are δT

T
≤ 10−5. [1]
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Does particle physics give possible sources for these perturbations? The existence
of magnetic monopoles are generally predicted by grand unified theories. Once the
defects are formed at 1016GeV, the number of monopoles is fixed, while the number
of strings may change. Open strings are allowed to self-interact, producing both
open and closed strings.

Without inflation, the expansion of the universe causes the density of monopoles
to dilute as a(t)−3. However, the density of radiation scales as a(t)−4. This indicates
that at some point in the universe’s development the monopoles would dominate,
causing the universe to collapse. This contradicts observation. Any viable theory
must not allow defects to dominate the evolution of the universe.

As with other difficulties with the ”standard” cosmology, inflation provides a
resolution. The rapid inflation would serve to dilute the number of monopoles
enough to make cosmology consistent with grand unification.

Similar considerations rule out models possessing domain walls. the energy of
a domain wall solutions scales as t to the number of co-dimensions, t2. Because
the surface energy density is based upon the difference in vacuum energies, it does
not scale with time. Other forms of matter scales like ρ t3. The density scales like
ρ ∼ 1

Gt2
. The ratio of domain wall energy to matter density would grow linearly in

time, causing the universe to collapse.[3] Any viable GUT must not predict domain
walls.

Cosmic strings are not as dangerous for the universe. Because their number is not
fixed after formation, their scaling behavior is much more complicated. One must
rely upon simulations to study string network dynamics. Without shape changing
string density would scale as a−2, more slowly than matter and radiation. However,
closed strings scales as a−3. The result is that string networks never have a vanish-
ing effect, yet never dominate.[2] The fact that cosmic strings never dominate the
development of the universe, yet are not inflated too much, makes them the only
candidate defect to seed structure formation.

When a string passes between two objects, initially at rest, the objects move
towards each other. If the one object is a source of radiation for the second, the
observer will detect a jump in the frequency of radiation. This discontinuous jump is
due to a Doppler shift. If the radiation is thermal, the Doppler shift give a deviation
from the blackbody spectrum.

δT

T
∝ Gµ (20)

This is for a single string. In terms of the CMB, we are the observing object. To
account for string networks in the early universe we must look at rms temperature
fluctuations averaged over the entire sky. This yields

(
δT

T

)

rms

∼ (5− 20)GNµ. (21)

8



The range of values depends on the redshift at which photons were last scattered.
For η ∼ mGUT ∼ 1016 and mPlank ∼ 1019, this gives fluctuations of the correct order
of magnitude to seed structure formation. [7]

5 Summary

We have reviewed aspects of inflationary cosmology and particle physics.
Generalizations of the standard model of particle physics generally predict the
existence of topological defects. The existence of domain walls or monopoles could
potentially cause the collapse of the universe. The grand unified theory of particle
physics must not predict domain walls. The universe is rendered safe from
monopoles by the inflationary phase. Cosmic string networks, however, never
dominate the evolution of the universe. The Doppler shift from passing string
networks is a reasonable candidate for the fluctuations in the cosmic microwave
background.
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