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In many biological and social systems, where the ideal of heritance and aberrance
exist at the same time, normal distribution failed in describing the distributions of
variables. In stead, many real data as well as simulations indicate that log-normal
distribution and power-law distribution can characterize many properties of this kind
of systems. In this paper, the failure of normal distribution is studied and a general
phenomenological model including both heritance and aberrance is set up. Using
Fokker-Plank equation, it turns out that, log-normal distribution will be favored if
the system has an optimum value for the variable we are studying, but power-law
distribution will be favored for discrete variables.
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I. INTRODUCTION

Although started by physicists, many researches indicate emergent states can also be seen
in many biology and social systems. One feature, which exists widely in many systems of
this kind, is that the distribution of variables is away from normal distribution.

With the support of central limit theorem, normal distribution is believed to be a good
approximation for any independent random variables. In ordinary systems, where interac-
tion is weak, independent-variables is usually a good approximation. As a result, normal
distribution is the most widely accepted descriptions of measured data. However, in system
where emergent states of matter show up, the independence of variables may be destroyed
by strong correlation and collective mode. In this case, normal distribution may break down.

In fact, people have noticed for very long time, many measured data gotten from biology
and social science systems cannot be described by normal distribution. In stead, log-normal
distribution seems to be favored by the nature[1]. During the last five years, many researches
in complex network structure and models based on a network structure find that in network
systems, power-law distributions can often be observed[2–5].

In section II, basic phenomena will be introduced. Then in the section III, I will discuss
basic ideal about random process and Fokker-Plank equation. Using this knowledge, we
will build a phenomenological model in section IV. And we will use this model to explain
log-normal distribution and power-law distribution observed in many biological and social
systems.

II. PHENOMENA

A log-normal distribution is defined as:

ρ(x) =
1√

2πσx
e−

(ln x−ln x0)2

2σ2 (2.1)

For biologist, this distribution is anything but a new discovery. Actually, one of the first
observations is reported in 1914 [6] in studying of inheritance of fruit size. During the last
90 years, log-normal distributions have been observed in many systems, including, ecology,
human medicine, environment, linguistics, et al. Here I list out some example:[1]

• Concentration of elements and their radiation in the Earth’s crust[7–9].

• Latent periods of many infectious diseases [10];

• Survival time after cancer diagnosis [11–13];

• Abundance of species in a plant or large communities [14–16];

• Number of words per sentence for writers. [17];

• Age of marriage for women in Denmark [18];

• Family size in England and Wales [19];

• Size of crystals in ice cream [20];
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• Size of oil drops in mayonnaise [20];

• Size of holes in cocoa press cake [20].

If we said that log-normal distribution is an old distribution, since it has been observed
for such a long time, then power-law distribution should be called a new focus of recent
researches in complex system. And this distribution is often, if not all, related with network
structure. The definition of power-law distribution is:

ρ(x) = Ax−γ (2.2)

where A and γ are constant. γ is usually called exponent and in most cases, it is a positive
number.

It is very obvious that this distribution will diverse at x = 0 if γ > 1, so usually a cutoff
for small x is needed. But for discrete variables (x = 1, 2, 3 . . .), things become much easier,
since we don’t need worried about the diverse and cutoff any more in this situation. This is
just the case of network model. Here, network help us again, just as it did in QCD, where
diverse can be regulated by studying lattice QCD. I believe this is part of the reason why
power-law distribution is often linked with network models.

Barabasi and his co-workers have found power-law distributions in many networks[2].
The most famous example may be the distribution of the number of links on web page. The
measured exponent for outgoing links is 2.45 and exponent for incoming link is 2.1. Similar
studies have also been done to the power-grid of western US, and the exponent here is 4.
Same stories also work for the movie actor network of Hollywood with an exponent 2.3.
The family name networks in Japan also show a power-law distribution with an exponent
0.65[21]. People have tried many theories to explain this phenomenon, and the most famous
example is the model of scale free network, with the rule of ”rich getting richer”. I will
compare this model with the model I raised in section IV at latter time.

All these examples, I just mentioned about power-law distribution, are the distributions
of quantities reflecting the structure of a network. But this is only part of the whole story.
Power-law dynamics are also observed in many dynamical models based on network struc-
ture. For example, the social influence model[4]. This model is studied by Castellano and
his coworkers with computer simulations in 2000. It has two basic assumptions:

1. One society has a better chance to communicate with the others who share more
identical attributes with it.

2. The more communications exist between two societies, the more common cultures they
are going to share.

They studied this model in a 2-D square lattice. Although this model only has these two
simple disciplines, the simulation shows very rich dynamical behaviors. A phase transition
from uniform phase (where almost all societies have one common culture) to random phase
(where each society intents to have its own unique culture) will be observed, if one increases
the initial culture diversity of the system. They also observed a power-law distribution of
the size of culture clusters (number of societies sharing the same culture) at critical point.

But my coworkers and I studied this model in detail[5], and two new features are founded.

1. The phase transition can also be seen in a small-work network and random network.
And a phase transition from random phase to uniform phase can be seen if we increase
the randomness of the network (or say, transfer the network from a regular one to a
small-world one.)
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2. We observed the power-law distribution under almost any control parameters, instead
of only seen at critical point and they all have similar exponent. This means that the
power-law is not a critical phenomenon.

Another example of power-law distributions observed in dynamical models based on a
network structure is the size distribution of business companies[3], if we considered the
business relations between companies as a complex network.

III. BASIC IDEAL ABOUT RANDOM PROCESS AND FOKKER-PLANK
EQUATION

Usually, a random process can be expressed as:

d~x(t)

dt
= ~f(~x, t) + ~g(~x, t)Γ(t) (3.1)

where t is time; Γ(t) is a random function (or called noise); ~f(~x, t) and ~g(~x, t) are known
functions of x and t. Let’s suppose x has only one component for simplicity:

dx(t)

dt
= f(x, t) + g(x, t)Γ(t) (3.2)

In order to solve this kind of problems, we must have some information about the noise.
Most commonly used noise is called white noise, which has properties:

〈Γ(t)〉 = 0 (3.3)

〈Γ(t)Γ(t′)〉 = 2Dδ(t− t′) (3.4)

where D is a constant. However these two equations don’t provide us enough information
about the noise, although in most cases, these two properties are enough for the calculation of
most quantities we want. The full information about a noise should include the correlation
functions of all orders. For example, Gaussian white noise contains enough information
about the noise:

〈Γ(t1)Γ(t2) . . . Γ(t2n−1)〉 = 0 (3.5)

〈Γ(t1)Γ(t2) . . . Γ(t2n)〉 = (2D)n
∑

δ(ti1 − ti2)δ(ti3 − ti4) . . . δ(ti2n−1 − ti2n) (3.6)

Suppose f(x, t) is a linear function of x, g(x, t) is 1 and Γ(t) is Gaussian white noise, then
this equation is called Langevin Equation. We can take an average on both side and got:

d〈x(t)〉
dt

= α〈x(t)〉 (3.7)

This is a very great feature of linear system, because in this case, we can simply ignore the
noise and the solution we got will just be the solution for the mean value of x. We can get
correlations of x(t) in similar way. We can let this equation time itself, and then, take a
average:

∂2〈x(t)x(t′)〉
∂t∂t′

+ α
∂〈x(t)x(t′)〉

∂t
+ α

∂〈x(t)x(t′)〉
∂t′

+ α2〈x(t)x(t′)〉 = 〈Γ(t)Γ(t′)〉 (3.8)
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In fact, we can calculate to any order, as long as we have enough information about the
noise. Usually, people only concern about first 2 orders, that’s why we usually just use white
noise, instead of Gaussian white noise.

But all these features are not true for non-linear systems. This is simply because, for
non-linear f(x, t), 〈f(x, t)〉 6= f(〈x〉, t). Therefore, new methods must be found to handle
non-linear problems. Fokker-Plank equation is just the right way.

By the way, here I would like to emphasize one key conception. If we simply ignore
the noise, for linear system we got the equation for mean value of x, but for non-linear
system, this equation has no real physical meaning, and it doesn’t stands for mean value
any more. This is the key difference between linear system and non-linear system. For
non-linear system, ignore noise is a very dangerous thing, but unfortunately, it is in many
cases what people did.

Fokker-Plank equation doesn’t give us the value of x, but it can give us the distribution
of x. Let’s define the distribution of x at time t as ρ(x, t) and suppose the noise here is
white noise. Then, Fokker-Plank equation for system described by Eq.(3.2) will be:

∂ρ(x, t)

∂t
= − ∂

∂x
[f(x, t) + Dg′(x, t)g(x, t)]ρ(x, t) + D

∂2

∂x2
[g(x, t)2ρ(x, t)] (3.9)

Due to different regulations of delta-function, there is also another version of Fokker-Plank
equation:

∂ρ(x, t)

∂t
= − ∂

∂x
[f(x, t)]ρ(x, t) + D

∂2

∂x2
[g(x, t)2ρ(x, t)] (3.10)

The difference between these two versions lies in whether we keep the term Dg′(x, t)g(x, t)
or not. If g(x, t) is a constant, then there would be no difference between these two versions.

There is no way to tell which version is better. Usually people use both these two
equations and compare the result with real data to decide which one is chosen to use under
certain condition. Here I will use the first one with no particular reason.

IV. MODEL

The model I set up is an evolutional model with both inheritance and aberrance. Suppose
we have a system which contains large number of individuals and each individual have a
lifespan. During its living time, one individual will procreate and then die. Let’s concentrate
on the evolution of one variable (call it x). Obviously, the x of one individual should be
related with its parent, but also has certain aberrance. Let’s describe this process by:

xi+1 = xi + f(xi) + g(xi)Γ (4.1)

Here i and i + 1 means the ith and the (i + 1)th generation. Γ is a white noise. I will take a
continue limit to the number of generation, since I just interested in the long-term behavior
of the system:

x′(t) = f(x(t), t) + g(x(t), t)Γ(t) (4.2)

Now I will make two assumptions:

1. f(x, t) is 0, which means the aberrance has no particular preference.

2. g(x, t) is a linear function of x.
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The first assumption is very usual one, but I’d like to make some comment on the second
one. Usually, the assumption for g(x, t) is: it is a constant, which means the absolute
aberrance is a constant no matter what x it has. But my assumption is different. I assume
the relative aberrance, δx/x, is a constant. The traditional assumption makes the calculation
much easier, which is just a linear system, but it is obviously wrong. We can imagine that
if a human adult have a height 1cm away from his or her parents, it is totally normal, but
if a single cell creature have a 1cm difference, in size, from its parents, it would be total
impossible.

With these assumptions, we can start to write the Fokker-Plank equation. But here
is one more problem. Individuals in my model don’t necessarily just have one child. In
fact the number of child is not fixed. As a result, one more term is needed to describe
the effect of population changing. This situation is very similar to the situation of chemi-
cal reactions. The equations describing chemical reactions are reaction-diffusion equations.
Reaction-diffusion equations are just diffusion equations plus proper reaction terms. Here, I
did the same thing. The Fokker-Plank equation is just our diffusion equation, and we need
to add ”reaction term” which describes population changing. The revised equation becomes:

∂ρ(x, t)

∂t
= (h(x, t)− 〈h(x, t)〉)ρ(x, t)− ∂

∂x
(Dxρ(x, t)) + D

∂2

∂x2
(x2ρ(x, t)]) (4.3)

Here the first term one the right side is just the ”reaction term” I added to Fokker-Plank
equation, where h(x, t) is the growth rate at each x. Here, I assume the non-linear effect
of ρ to the ”reaction term” is small. I also let h(x, t) subtract its own mean value. This is
simply a renormalization to ρ(x, t), since the integration of ρ(x, t) over all possible x should
give us 1 by definition.

Now, we can make a change of variables to simplify the equation. Define:

y = lnx (4.4)

ρ̃(y, t) = xρ(x, t) (4.5)

Here the second substitution is necessary, because we need to keep the integration of density
over all possible value as 1 (

∫
ρ(x, t)dx =

∫
ρ̃(y, t)dy = 1). After substitution, we got:

∂ρ̃(y, t)

∂t
= (h(y, t)− 〈h(y, t)〉)ρ̃(y, t) + D

∂2ρ̃(y, t)

∂y2
(4.6)

V. RESULT

Based on Eq.(4.6), I will try to explain the log-normal distributions and power-law dis-
tributions observed in different fields. Now the only problem is figuring out what h(x, t)
is.

A. Log-Normal Distribution

We know that h(x, t) is the growth rate for different x. And we can imagine that for
most living creatures, there should be one optimum value of x. Although this optimum may
depend on many other conditions, we can assume that at mean-field level, we should be able
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to find one optimum value. Suppose this value is y0, then we can make a Taylor expansion
about this point (Notice since y0 is optimum value, most individuals will have a y close to
this value. Therefore the most contributing part should be around y0. This is the reason
why we can expand it). Obviously, the linear term will be zero, and we keep only leading
term, which is quadratic term. We also know that the coefficient of quadratic term should
be negative. So we can write:

h(y, t) = h(y0)−
|h′′(y0)|

2
(y − y0)

2 + O((y − y0)
3) (5.1)

Now we got an equation which is solvable. I just want to find the steady state, where ρ
doesn’t depend on time. And the solution is very simple:

ρ̃(y, t) =
1√
2πδ

e−
(y−y0)2

2δ2 (5.2)

where

δ2 =
2D

|h′′(y0)|
(5.3)

If we transfer back from y to x, we will get:

ρ(x, t) =
1√

2πδx
e−

(ln x−ln x0)2

2δ2 (5.4)

This is just log-normal distributions.

B. Power-Law Distribution

Suppose h(x, t) is a delta function of x. And again we just pay attention to steady state
solution where ∂ρ

∂t
= 0. The equation will be:

0 = A(δ(y − y0)− 1)ρ̃(y, t) + D
∂2ρ̃(y, t)

∂y2
(5.5)

This equation has solution:

ρ̃(y) =

 C1e
√

A/Dy (y < y0)

C2e
−
√

A/Dy (y > y0)
(5.6)

If we transfer back to x, instead of using y, we got:

ρ(x) =

 C1x
√

A/D−1 (x < x0)

C2x
−(
√

A/D+1) (x > x0)
(5.7)

We can see that for x > x0 part, we got a power-law distribution which has a exponent√
A/D + 1. But here we got 2 problems. First, it is not easy to find a delta function in

the real world. Second, for x ≤ x0, this distribution will break down and, in fact, these
distribution diverse at x → x0, if we notice that the exponent is larger than 1. We will
discuss about these two problems in next part.
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VI. CONCLUSION AND DISCUSSION

As we have discussed in previous part, we will get a log-normal distribution as long as
these three assumptions are satisfied.

1. No preference heritance (f(x, t) = 0);

2. Linear aberrance (g(x, t) ∝ x);

3. Existence of optimum value x0 (h(y, t) = h(y0)− |h′′(y0)|
2

(y − y0)
2 + O((y − y0)

3)).

These assumptions are, at least, qualitatively reasonable in many biology and social systems.
Of course, qualitatively reasonable doesn’t guarantee this theory is right, but at least we
got a theory which is not obvious wrong.

Power-law distribution can be reached if we keep the first two assumptions and change
the least one into h(x, t) = Aδ(x − x0). But as we mentioned before, there are two major
problems in this argument. In order to conquer these two problems, discrete variable seems
to be a very good choice.

Suppose we have a model where variable can only be positive integers and also suppose
we continuously bring into this system new members which have x = 1, then in this model,
we have h(x, t) = Aδx,1. In continue limit, it will become h(x) = Aδ(x − 1). And since x0

here is 1, which is just the smallest possible values for integer x, we don’t need to worry
about x < x0 any more.

This is just the scale-free network model. To set up a scale-free network, two things are
necessary:

1. Rich getting richer law;

2. Continuously bring new nodes into the system, and new nodes have very small number
of links.

The first condition is just our linear aberrance assumption, and the second one is just the
argument I made for discrete models. Therefore, we have pretty good reasons to believe
that my model is equivalent with scale-free network in the continuous limit.

Besides, this equation may be more than just equivalent to scale-free network. It may
also be a good quantitative description of it. Although computer simulations and real data
show that there are different power-law exponent for different systems, the mean-field theory
of scale free network can give us only exponent 3. But my model can give any exponent
larger than 1.

We also notice that this explanation of power-law doesn’t use any feature about critical
point, which agrees with our simulation result , which shows that these distributions can be
observed in almost any control parameter, instead of only at critical point [5].
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