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Experimentally, it has been found that in a well-defined range of fields, tempera-

tures and driving amplitudes, the vortex matter displays novel types of nonlinear

response. As is the case with ordinary solids, it appears that unidirectional drives

tend to disorder the system, while shaking tends to order it. A numerical result

states that the oscillatory motion of vortices, provided that its amplitude is of the

order of the lattice constant, can favor an ordered structure, even when the motion

of the vortices is plastic when the same force is applied in a constant way.

I. INTRODUCTION

Vortex matter (VM) in the presence of disorder is a paradigm to study the general problem

of elastic manifolds in random media. The competing roles of order due to vortex-vortex

interactions (Fvv) and disorder due to pinning (Fvp) together with thermal fluctuation (FT)

in VM account for its complex phases and dynamics (Blatter 1994, Brandt 1995 ).

One of the most interesting dynamic phenomena of VM is the depinning process. In

the past several decades, it has been studied deeply. Both theoretical and experimental

results show that this is a very complex process. For a steady driven VM, two limiting

cases have been distinguished. (i) With a high density of weak short-range pinning centers,

the motion of the VM is inhomogeneous only in a narrow region near the critical force Fc,

which is determined by the collective pinning theory (Larkin 1979 ). (ii) With strong pinning

centers (or a small concentration of them) plastic deformations become important and the

motion is disordered (Koshelev 1992 ). For the second case, there is mounting evidence that

plastic flow in VM involves the formation of channels in which vortices are more weakly

pinned than in the surrounding areas (Jensen 1988, Grønbech-Jensen 1996, Olson 1998 ).

Furthermore, three characteristic driven force (current): Fc, Fp, and Ft, are determined by

calculating the current dependent differential resistance and structure factor. Consequently,

three different dynamic regimes (“plastic flow”, “smectic flow” and “frozen transverse solid”)

are distinguished (Kolton 1999 ). Typical vortex trajectories of the three regimes are shown
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in Fig.1.

FIG. 1 Vortex trajectories and structure factors. (a),(d): Fc < FL < Fp, plastic flow; (b),(e):

Fp < FL < Ft, smectic flow; (c),(f): FL > Ft, frozen transverse solid.

This is the basic picture of the depinning process in dc drive case, which is already

complex enough. Recently, the depinning process of vortex matter driven by alternating

current has attracted much attention. Some new physics emerges, which has been proved

to be intrinsic to the alternating dynamics. In this paper, I will present some remarkable

results about this interesting phenomenon. In the following sections, I discuss experimental

results first (Henderson 1998 ). Then I introduce a numerical simulation (Valenzuela 2002 ).

Finally, an overview of the alternating dynamics in vortex matter is given.
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II. EXPERIMENTAL RESULTS

Results shown here are for a single crystal sample of the low Tc superconductor 2H-

NbSe2 with the zero-field transition temperature Tc = 5.8K. Measurements were done by

the standard four lead technique. Three types of driving currents were used: (a) a current

is switched between −I0 and +I0 (bidirectional pulses); (b) switched between 0 and +I0

(positive unidirectional pulses); (c) between 0 and −I0 (negative unidirectional pulses).

A. Driving type Dependent Threshold Current

Driving type dependent threshold current is shown in the main panel of Fig.2. The

current voltage characteristics for unidirectional and bidirectional pulses at 1KHz for three

values of temperature T are shown in the insets. Note that while the response to dc and

unidirectional drives is almost the same, the response to bidirectional drives differs signif-

icantly, especially at 4.55 K. For the other two temperatures shown in the insets, there is

little or no difference in the response to the two kinds of drives. The region where there is

finite response to bidirectional pulses but no response to unidirectional ones is indicated by

the shaded area in the main panel of Fig.2. Comparison with the dc critical currents shows

that a large difference between the unidirectional and bidirectional thresholds only occurs

between Tm(H) and Tp(H).

Note that there is a peak in the Ic(T ) curve, which is known as the peak effect. In this

case, increasing T at fixed H leads to a sharp rise in Ic which sets in at T = Tm(H), reaches

its maximum value at Tp(H), and finally goes to zero at the transition temperature Tc(H).

Further studies of the dc current-voltage characteristics (Bhattacharya 1993, Henderson

1996 ) have revealed that the variation of Ic is connected to the existence of three states of the

VM which exhibit distinct dynamic properties. For T < Tm(H), vortex-vortex interactions

dominate and VM form an ordered lattice that responds elastically when driven by a current

I > Ic. Above Tp(H), the system is in a glassy state where VM is highly disordered. Between

Tm(H) and Tp(H), VM is in an intermediate state in which it behaves like a soft solid that

tears when it is depinned. The vortex motion in this state is thought to involve the flow

of channels (Jensen 1988, Grønbech-Jensen 1996, Kolton 1999 ) of relatively weakly pinned

vortices past more strongly pinned neighbors, corresponding to a plastic flow.
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FIG. 2 Temperature dependent thresh-

old current for unidirectional, bidirectional

pulses and dc currents. Insets show the V -I

characteristic at three temperatures.

FIG. 3 The response of the flux lattice at

H=0.5 T and T=4.59 K to bidirectional

pulses (a), positive unidirectional pulses (b),

and negative unidirectional pulses (c).

B. Steady State Response to Different types of Drives

Fig.3 shows the response of a steady state of VM to each types of driving currents at

H=0.5 T and T=4.59 K. When driven with the bidirectional pulses (see Fig.3(a), the VM

were shaken back and forth by a current that switched between -30mA and +30mA, which is

lower than the dc critical current, i.e. I0 < Ic. The measured voltage, which is proportional

to the averaged velocity of the vortices over the entire system, is about 30% of what it would

be in the free vortex flow limit (i.e. in the complete absence of pinning). This result tells

us that vortices are shaken loose to be in a “easy to move” state. When the driving current

is switched between 0 and +30mA or 0 and -30mA (unidirectional pulses, see Fig.3(b)-(c)),

the response is essentially zero. This means the mobility of the vortices do not change when

driven by a unidirectional pulse. The vortex matter is in a “hard to move” state.
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C. Steady State Response to Asymmetric Ac Drives

How will the system response to asymmetric ac drives? Intuition implies that something

different must occur. The effects of varying the symmetry of the driving current are studied

in two cases: amplitude asymmetry and temporal asymmetry at T= 4.59 K and H= 0.5 T.

As shown in Fig.4(a)-(c), an asymmetry in the amplitude, even when it is small, causes a

significant reduction in the response compared with that of the symmetric case. Remarkably,

increasing the drive in either direction leads to a sharp decrease in the response (provided

the drive is not too large). Actually, we have discussed the limiting case of the amplitude

asymmetry, which is the unidirectional pulses. In that case, the voltage response is essentially

zero. In Fig.4(d)-(f), the effects of varying the temporal symmetry of the pulse are studied

while keeping the pulse amplitude symmetric. The pulse duration in each direction is varied

from symmetric (equal pulse lengths) to asymmetric while keeping the repeat frequency of

pulses fixed. The response is only weakly affected: there is still a substantial voltage when

the drive is positive (or negative) 95% of the time. In this case, there is a net flow of vortices,

not just back and forth motion.
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FIG. 4 Effect of changing the symmetry

of the driving current. (a),(d) symmetric

bidirectional pulses; (b),(c) drive amplitude

asymmetry; (e),(f) temporal asymmetry.

FIG. 5 In this measurement a dc current was

first applied for several seconds. Then sev-

eral bidirectional pulses were applied after

which the current was set back to dc.
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D. Evolution of Response when Changing Drives

The data shown so far were taken after the response settled to a steady state. If the

drive is switched from the bidirectional pulses shown in Fig.3(a) to the unidirectional pulses

in Fig.3(b), the response takes some time to decay to zero. Such transient effects can be

studied by observing how the response evolves when the drive is changed. As shown in

Fig.5, a +35mA dc current was first applied for several seconds. Subsequently the current

was switched back and forth between +35 and -35mA several times, after which it was left

at +35mA. We see that initially the response is zero, consistent with the fact that 35mA

is less than the dc critical current. But a small voltage appears as soon as the direction

of the current is reversed, and this voltage jumps up to a larger value on each subsequent

reversal. If the bidirectional drive persists the response eventually saturates to the steady

state shown in Fig.3(a). The voltage decays somewhat between each reversal. After the

drive is switched back to dc the decay continues until the response goes back to zero. The

entire pattern shown in the figure repeats exactly, if the current is cycled repeatedly through

the sequence: dc, bidirectional pulses, dc.

III. NUMERICAL SIMULATION

A key issue that naturally surges is the microscopic dynamics of vortices and the relation

between VM’s order and mobility with different types of drives. Moreover, the frequency

dependent response of the system arouses our curiosity. Can similar phenomena always

be observed no matter how fast we apply the alternating drives? A delicate numerical

study(Valenzuela 2002 ), which addresses simultaneously the order and mobility of the VM

in ac and dc drives, can answer our question.

A. Basic Equations and parameters

The simulation is based on the standard Langevin dynamics. The overdamped equation

of motion of a vortex in position ri is given by Fi =
∑Nv

j 6=i F
vv(ri − rj) +

∑Np

k Fvp(ri − rp
k) +

FL + FT
i = η vi, where Fi is the total force on vortex i due to vortex-vortex interactions

(Fvv), pinning centers (Fvp), the driving current J (FL ∼ φ0J× ẑ) and thermal fluctuations

(FT
i ). Here, η is the Bardeen-Stephen friction coefficient, Nv the number of vortices, Np the
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number of pinning sites and rp
k the location of the kth pinning center. Normalized scales of

length and force are λ and f0 = φ2
0/(8π

2λ3), respectively. Periodic boundary conditions are

used.

The governing equation of motion automatically provides positions and velocities of all

vortices as a function of time. Therefore, the average velocities of vortices is obtained

〈v〉 = 1
Nv

∑Nv
i=1 vi, which is proportional to the mobility of the vortex matter and the resulting

voltage. As for structural information, it can be collected by working in reciprocal space.

The time averaged static structure factor is constructed as S(k) = 1
Nv
〈|∑Nv

j=1 eik·rj(t)|2〉. To

quantify the degree of order of the VM, one can determine the average concentration of

vortices with coordination number not equal to 6, ndef , using the Delaunay triangulation

procedure.

B. Vortex Configurations

To study the alternating dynamics, square alternating currents (bidirectional pulses) are

chosen, with strength F L (FL = F Lx̂) and frequency ω = 2π/P . For steady driving forces

between Fc ∼ 0.0085f0 and FT = 0.012f0 the vortex flow is always disordered with a high

density of defects, ndef (of the order of 20%). For higher driving forces, ndef diminishes

and the movement is ordered with all of the vortices moving at the same average velocity.

Experimental results (Valenzuela 2001 ) suggest that when vortices perform an oscillatory

motion whose amplitude is of the order of the lattice constant, the healing of defects should

be important. For this reason, F L and P are initially chosen to satisfy F L P/4 ∼ 1 (in

normalized units)1.

The starting state is a perfectly ordered vortex array. Then a steady current with

F L = 0.0118f0 in the horizontal direction is applied2. The up panel of Fig.6 shows a

snapshot of the configuration of the VM after reaching a stationary state in which the av-

erage velocity of vortices and the average concentration of defects remained constant. This

state presents a relatively high concentration of defects. Then an alternating square driving

1 A rough estimation is given here. Suppose the equation of motion of a single vortex is FL = ηv. Then
the amplitude of the oscillatory motion is vP/4, which is of the order of the lattice constant a0, i.e.
(FL/η) × P/4 ∼ a0. For a hexagonal lattice, a0 is determined by nv = (3 × 1/6)/(

√
3a2

0/4) = 1. So
a0 ≈ 1.07. Finally, one gets FL × P/4 ∼ ηa0 ∼ 1.07, in the normalized units.

2 Note that FL is slightly larger than Fc, which is different from Henderson’s experiments
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current with the same strength (0.0118f0) is turned on to the disordered state shown in the

up panel. After 500 cycles, the obtained configuration of the vortex array is shown in the

down panel. The corresponding structure factors of both configurations are also shown. The

Delaunay triangulation and the structure factor reveal an important reduction in ndef when

the alternating current is applied. It is fundamental to emphasize that the initial state was

obtained with a steady current with the same strength starting with a perfectly ordered

vortex array. This implies that, for certain values of the applied current, the flow of vortices

can be plastic and disordered introducing defects in the system but, if the same current is

applied in an alternating way, the defects heal and the vortex matter reorders.

C. Evolution of the Reordering

To show the the evolution of this reordering, the concentration of defects ndef , the average

value of the absolute velocity 〈v〉, and the average quadratic displacements of vortices per

cycle, 〈∆2xN〉 and 〈∆2yN〉, as a function of the number of cycles N , are calculated. See

Fig.7(a). The results shown correspond to the average over 4 different random distributions

of the pinning centers. It is seen that, for an increasing number of cycles, ndef clearly

decreases and the vortex mobility is enhanced (as reflected by a 40% increase in the average

vortex velocity). It is also noted that 〈∆2xN , yN〉 diminish and that all magnitudes vary in

an approximately logarithmic way as observed experimentally (Henderson 1998, Valenzuela

2001 ). The combination of these observations indicates that, as the number of defects

decreases, vortices are clearly more mobile and that, after completing one oscillation, they

return closer to their original positions (〈∆2xN〉 and 〈∆2yN〉 decrease). This suggests that

vortices organize and move more coherently as they are forced to oscillate.

In Fig.7(b), it is shown what happens when varying P (F L) while keeping F L(P ) fixed.

ndef is plotted as a function of the parameter F LP/4, after applying 100 cycles of the square

current to an initial disordered state as in Fig.6(up). An important result is that, if the

period P is increased so that the excursion of vortices greatly exceeds the lattice constant,

the vortex matter distorts and does not reorder. This is not surprising because if the

amplitude of the oscillation is high enough, the system should behave in the same way as

when driven by steady forces. For low enough P , vortices oscillate in their pinning sites and

the VM does not reorder either. Notably, if there is a tiny asymmetry in the amplitude of
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FIG. 6 Delaunay triangulation and struc-

ture factor, S(k) for steady forces (up) and

oscillatory square-forces (down). The more-

ordered vortex configuration at the down

panel was obtained after 500 cycles of the os-

cillatory force applied to the disordered state

in the up panel. See text. FL = 0.0118f0 (in

the horizontal direction).

FIG. 7 Dynamical ordering. (a) Defect con-

centration, ndef , average absolute-velocity,

〈v〉, and average quadratic displacements of

vortices per cycle, 〈∆2xN 〉 and 〈∆2yN 〉 vs.

the number of cycles, N . (b) ndef as a func-

tion of FLP/4 after 100 cycles (filled circles:

FL fixed, open circles: P fixed). The point

FLP/4 = 1 (gray) is common to both curves.

the square current (∼ 5%) the VM quickly disorders and, after a few cycles, both ndef and

the vortex mobility reach values close to those found with steady forces. This observation

is reminiscent to the experimental results (Henderson 1998, Valenzuela 2001 ).
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IV. SUMMARY AND OPEN QUESTIONS

Results shown above look very similar with plasticity effects in ordinary solids (Sandor

1972, Hertzberg 1989 ). When we apply stresses greater than the “yield point” to a solid,

regions of the material will slide past one another, which creates permanent plastic defor-

mations. As the plastic flow continues, an initially soft material, such as annealed copper,

becomes more and more difficult to deform and the motion eventually stops, provided the ap-

plied stress is not too large. This phenomenon is known as “strain hardening”. The material

remains in a hardened state after the applied stress is removed. (The vortex version of “strain

hardening” can be seen in Fig.5 and the final vortex configuration is shown in Fig.6(up).)

However, after strain hardening, the yield point is typically somewhat anisotropic, i.e. less

stress is required to cause plastic flow in the direction opposite to which the object was de-

formed during the hardening process. When the stress on a heavily strain hardened material

is repeatedly reversed, the material becomes progressively easier to deform: this process is

known as “cyclic softening”. (The vortex version of “cyclic softening” can be seen in Fig.5

and the final vortex configuration is shown in Fig.6(down).) Strain hardening is usually

associated with an increase in the density of dislocations, whereas cyclic softening involves

healing of dislocations and reordering of the lattice.

In terms of these plasticity effects in ordinary solids, we can interpret the similar behaviors

in vortex matter. We conclude that in a well-defined regime of the H-T plane (see Fig.2),

where the vortex matter behaviors like a soft solid. The vortex motion in this state involves

the flow of channels of relatively weakly pinned vortices past more strongly pinned neighbors.

The symmetric back-and-forth shaking of vortices facilitates the formation and growth of

these channels. Note that the channel growth is strong sensitive to the symmetry of the

driving amplitudes. When the amplitude of the drive is not the same in both directions,

the larger amplitude pulses lead to jamming of the channels which cannot be completely

unjammed by the smaller amplitude reverse drive. For the limiting case, i.e. applying

a unidirectional drive, the easy-flow channels will become blocked quickly. Consequently,

the voltage response diminishes quickly, resembling the phenomenon of strain hardening in

ordinary solids.

Numerical simulation has shown some basic features of the alternating dynamics of the

vortex matter. However, there are still some questions:
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• First, as mentioned above, the amplitude of square driving current is slightly larger

than the dc critical current. That is the reason why the average velocity of vortices

in the final stationary state remains constant, rather than zero. But in Henderson’s

experiments, the amplitude of the alternating current is lower than the dc critical

current. Therefore, the simulation doesn’t reflect the experimental results exactly.

• Second, the time evolution of the voltage response is not shown in the simulation.

In fact, up to now there is no relative numerical work reported. Technical difficulty

lies in the time scale problem in the alternating dynamics. In the Langevin dynamic

simulation, proper time step has to be taken with care to obtain accurate and stable

solutions of the equations of motion.

• Third, recalling that the yield point in ordinary solid is typically somewhat anisotropic

after strain hardening, we wonder whether the similar phenomenon occurs in the vortex

matter. More specifically, does a square drive perpendicular to the previous steady

drive reorder the vortices more easily than a square drive parallel to the previous

steady drive? As far as I know, this has not been simulated at all.

All in all, in order to completely understand the alternating dynamics of the vortex

matter, more work is needed, especially theoretical analysis and numerical simulation.
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