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Abstract Understanding the collective behavior of large groups of animals is
an interesting and challenging topic. Despite the diversity of animal species as
well as the intrinsic complexity of individual animal, it has been shown that a wide
range of collective behavior of the group can arise from much simpler behavior of
the individuals. In this paper we will look into several typical examples of
common types of collective behavior, arranging from ant trails to Fish schools
and even humans, and introduce theoretical and computational model developed
for these and other similar cases, in order to give a brief overview of the field’s
latest developments.
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Introduction
      Many species of animal display various types of collective behavior and self-
organization. Ants and honeybees build sophisticated nets and perform well organized

food searching, fish schools change swimming patterns and group size in response to
different situation, migrating geese forming V-shaped flocks, even pedestrians walking

on the side walk or consumers making their choices are just a few examples of behavioral

patterns that became apparent only at the level of the group.
Efforts on understanding the principle behind complicated animal behavior dates

back to as far as 1977. Through the pioneering works of Nicolis and Prigogine, Ashby,
Weiner, von Bertalanffy  and Deneubourg many others (see [1] for a brief review), it

became clear that a wide variety of collective animal behavior can be viewed as a

consequence of  individuals following a set of simple behavior rules, and can thus be
modeled by mathematical equations similar to physical and chemical approaches. This

important notion has also inspired the idea of using computer simulation to model

collective animal behavior similar to molecular dynamics simulation in condensed matter
physics.

In this paper we will review several typical types of collective behavior, as well as
some of the theoretical and experimental efforts trying to extract the essential laws

behind. We intend to establish an overview of some of the late methods in the field,

without going too much into the rich details of each case.

Attracting and Aligning ---- The SSP model:
One canonical and straightforward example of collective animal behavior is

dynamic group motion of large number of animals, such as bird flocks, fish schools and

even human crowds.  The characteristic feature of such behavior is that the length scale
of the group in uniform motion often far exceeds the possible interaction and

communication range of single individual. For example, fish schools can spread over 700
m2, and often consists of hundreds and thousands of individuals. [2] Therefore, groups of

animals that are able to communicate through sound or chemical signals at distance

comparable to group size do not fell into this category since they will have different
mechanisms of generating group behavior.
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A widely used class of model for simulating group motion of the animals is

known as the Vicsek model, or the self-propelled particle (SSP) model. [3,4,5,6]
An example of basic SSP model can be found in [7], in which single animal are

modeled as particle that behave according to the following set of rules:
1) Avoid collision: individuals attempt to avoid collision by moving away

from objects within a distance δ, which includes simulation boundaries and other

individuals.  In [7] this is implemented as:

€ 

di(t + Δt) = −
c j (t) − c i(t)
c j (t) − c i(t)j≠ i

∑ −
rB (t) − c i(t)
rB (t) − c i(t)

(1)

where 

€ 

€ 

c i t( ) is the position vector of the i’th particle and the summation is over

all particles j within δ of particle i. 

€ 

rB t( )  is the position of the boundary. 

€ 

di t( ) is

the desired direction at time t.

2) Attract and align: when no obstacle is within distance δ, individuals are

 attracted towards its neighbors within distance ρ. They will also try to align their

moving direction to the direction of these neighbors

€ 

vk t( ) , i.e. :

€ 

di t + Δt( ) =1 2 vk t( )
vk t( )

+
ck t( ) − c i t( )
ck t( ) − c i t( )k≠ i

∑
k=1
∑
 

 
 
 

 

 
 
 

(2)

The first term in the parenthesis causes alignment and the second term is attraction. 

€ 

vk t( )

is the direction vector of each individual and  

€ 

ck t( ) is the position vector.

3) There is a maximum turning angle of θ at each time step, and each turn is

 subjected to error.
While rules (1) and (3) can be viewed as general requirement for any simulation,

rule (2) is unique to this model and could be thought of the origin of all the collective

behavior that occur in computer simulations.
In [7], the model is used to simulate the group size change of banded killifish in

response to different signals.

In lab experiment reported in the same paper, banded killifish form smaller
groups or swim independently at the signal of food source. However, in the presence of

crushed killifish skin, which mimics a predator attack signal, the fish form large schools
as a means to protect themselves.
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Computer simulation using SSP model reproduced the group size choice observed

and suggests that it may simply be achieved by individuals adjusting the radius of
attraction/alignment region ρ in response to different signals, as is shown in Fig.1. 

Figure 1. Simulated group size frequency with different Interaction radius. The interaction radius is

expressed in terms of body length of single killifish (Figure from [7])

  In both the lab experiments and computer simulations mentioned above,
environmental signals are made to be almost equally accessible to each individual in the

group, so that almost all members of the group adjust their motion spontaneously.

However, the more natural situation would be that only a small fraction of animals in a
group has sufficient information or experience to determine the direction of motion.

This is especially true in the case of migrating groups of animals in which a limited
number of experienced members of the group play the role of tour guide [cite in fish2]. It

is interesting to ask how animal without means of long range communication can achieve

effective leadership.
In [8], the authors tested the assumption that attraction and alignment behavior

alone is able to achieve this goal at large group size. Their implementation of leadership
based on the original SSP model is as follows:  A small number of ‘informed
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individuals’ are assigned a preferred direction 

€ 

gi  with weight 

€ 

ω . This will bias their

intended direction 

€ 

di(t + Δt)  determined by methods mentioned above through:

€ 

di' (t + Δt) =
di(t + Δt) +ωgi
di(t + Δt) +ωgi

(3)

By introducing the above term and omitting the boundary term in (1) that are

irrelevant for migration, the authors studied the effectiveness of leadership in several
different situations. The effectiveness is represented by the accuracy of motion, which is

defined by the normalized angular deviation[8] of the group direction around the
preferred direction.

Fig.2 showed non-linear dependence of the accuracy to the portion of informed

individual in the group, as well as to the number of informed individuals in the group.
The accuracy of the group depends heavily on the absolute number of informed members,

rather than on the proportion. This indicates that by adopting the attract-align behavior

assumed in the SSP model, larger groups can be navigated by smaller portion of informed
individuals.

Figure 2. Group accuracy as a function of proportion of informed individual. Inset: Group accuracy as

a function of absolute number of individuals. (Figure from [8])

When informed individuals differ in their choice of preferred direction, its very

possible that this is caused by some of the ‘guides’ make wrong decision for various
reasons. However, other group members have essentially no information as to the cause
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of this disagreement. Therefore, the group can only judge from facts such as numbers of

leaders in each direction or the quality of the information provided by the leaders.
Simulation using the SSP model showed that by adopting attract-align behavior,

group of animals can be very sensitive to difference in the number of informed
individuals moving in each direction, given that there is a sufficient difference in

direction. (see Fig.3 )

The group is also capable of choosing between low and high quality information,
as is shown in Fig.4 .  If one group of ‘guides’ are unsure of their directions, the group

can automatically switch to another direction.

Synchronization and coupled oscillators:
Synchronization is another class of common collective behavior that has been

relatively well studied, and is likely the most common collective behavior found among
human.  Audiences clapping in theater often switch spontaneously between coherent and

incoherent phases [9], female working or living together have synchronized menstrual
cycles [10] and even consumers tend to synchronize their choice [11].

Figure 3 (top):  Collective selection when
subset 1 of n1 informed individuals preferred
direction -180 degrees and subset 2 of n2
informed individuals differ in their
preference. a) n1=n2=5 b) n1is increased by1
c) n1 is increased by 1 and n2 decreased by 1

Figure 4 (left): Collective selection based on
information quality. Subset 1 prefers 0
degree and subset 2 prefers 100 degree with
n1=n2. (Both figures are from [8])
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In animals, the most well studied examples are probably fireflies’ synchronized

flashing [12] and activity pattern in ants [13,14]. For ants, the situation is further
complicated by the fact of inhomogeneous distribution of population in nests. For

example, in a nest of the ant Leptothorax acervorum, there are two spatially separated
groups of ants, one is near the entrance of the nest and the other is near the brood pile

which is in the center of the nest.[cite ant1] Ants within these groups synchronize their

activation pattern through body contact into oscillation cycles with 20 minute period. The
two groups are thought to couple their oscillation pattern in the absence of perturbation.

However, in an ant colony, there are always a number of foraging ants leaving the nest
and thus are decoupled from the oscillation pattern of the nest. When these ants return to

the nest again, they present a perturbation to the oscillation pattern of the nest.

To study how the synchronized activity pattern depend on spatial distribution and
external perturbation, Boi et al. [14] used a coupled oscillator model to simulate the

activity circle in the ant nest. The coupled oscillator model consists of the following sets

of differential equations:

Here, the number of active and inactive ants near and entrance or near the brood pile
are indicated by

€ 

Na  Ni  Ba  Bi respectively. The functions f and f1model the activation of

inactive ants using experimentally evaluated constants, these functions couple activation
both within a single group and in between the two groups. Functions g and g1 and

variables E and H measures the ants’ reduced probability of activation having been
active. In other words, these functions resemble a refractory period after activity.
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Active ants become inactivated at rates s and s1 respectively. The perturbation of

foragers are incorporated using parameters l and a, which indicates the rate of ants
leaving and reentering the nest respectively.

Figure 5 : Simulated oscillation pattern of ant activity. Dotted lines indicate entrance group and solid
lines are brood pile group. Left, foraging ants are not allowed to reenter the net. Right, foraging ants
are allowed to reenter. (Figure from [14])

To compare the results of simulation, the authors also used video camera to record ant

behavior in laboratory environment.
Both simulation and experiment shows that when foraging ants are not allowed to

return to the nest, the brood group and the entrance group are coupled to each other.
When foraging ants are allowed to return to the nest, the perturbation mainly affects the

entrance group and disturbs its oscillation pattern. (Fig.5)

Ant trails
Ants self-organizing by ‘communicating’ through pheromone signal is a typical

example for collective behavior arising from communication and interaction at the length
scale comparable to the group size.

Many species of ants leave signaling chemical substance, called pheromone, once
they have found a food source and starts to return to their nest. Other ants can follow

these pheromone trails to reach the food source and leave their own pheromone on the

way to reinforce the signals. [15] Through this process, ant colonies can develop a
network of pheromone trails linking to nearby food sources.
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The establishment and development of ant

pheromone networks, or even single pheromone
trail, is a result of group behavior of a considerable

number of ants, and thus can display interesting
formation patterns such as phase transitions due to

memory effects.

In [16], the authors generated the
following simple partial differential equation to

study the establishment of an ant pheromone trail:

€ 

dx
dt

= (α + βx)(n − x) − sx
s+ x

4( )

   If the number of ants walking to the
food source is

€ 

x , then  and

€ 

βx  determine

respectively the rates at which a single ant

finds a food source by independent
searching or being led by pheromone signal

reinforced by 

€ 

x  other ants that were

walking to the source before it. The size of
the colony is 

€ 

n  . The second term on the

right hand side accounts for the
deterioration of the pheromone signal in

which 

€ 

s denotes a maximum rate at which

ants lost the tail. The non-liner dependence of
this term on 

€ 

x  can be thought of as caused by

deterioration of pheromone signal in time.

By solving the equation for x at 

€ 

dx
dt

= 0, the authors observed phase transition

phenomenon for small value of 

€ 

α , as shown in Fig.6b. It shows that for big enough ant

colonies, pheromone trails can almost always be established. If the size of colony is too

Figure 6 : phase transition behavior in
ant pheromone trail. A: food source is
frequently found B: food source is
infrequently found. (Figure from [16])

Figure 7: Increase in number of ants
walking towards food source. A:
colony of 300 B: colony of 700 (Figure
from [16])
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small, trails are hard to establish even if the food source was found by many ants at the

beginning. Medium sized ant colony can also establish trails easily if 

€ 

α  is large (Fig.6a),
or the food source is easily found upon independent searching. However, if the food

source is not found frequently enough, for a medium size ant colony the generation of
pheromone trail is largely dependent on the initial condition. The trail will only establish

if enough ants have found the food source at the beginning (Area D in Fig. 6b).

To test this prediction, the authors conducted experiments in which the food
source is initially put close enough to the net so that individual foraging ants can easily

find it. When a number of ants are feeding at the food source, the source is moved to a
further distance. Previous experiments have shown that if placed at this distance in the

beginning, ant colony of all sizes were not able to establish pheromone trails. The authors

observed that when initially helped, colonies of 700 ants are usually able to establish
pheromone trails while colony of 300 are not, in consistence with the prediction of the

model. (See Fig. 7)

Collective behavior emerging from selfishness
A common feature in the examples introduced above is that collective behavior

has always originated from individual animals’ tendency to behave similarly to others in
the group. No matter it is direct alignment in the case of fish school or indirect mimicking

such as ants trying to follow the same track as others by sensing chemical signals.

However, there are cases in which behavioral patterns can arise in the total absence of the
tendency to ‘mimic’ others.

One extreme example is that collective behavior patter can arise from selfishness
alone, as is in the case of human beings under escape panic.  Helbing and Vicsek treated

selfishness as ‘psychological forces’ in their dynamical model simulating behavior of

escaping crowds. [17] In their equation of motion:

€ 

mi
dv
dt

= mi
vi
0 t( )e i0 t( ) − vi t( )

τ i
+ fij + fiW

W
∑

j≠ i
∑

The second and third term on the right hand side are the repulsion and friction

force between neighboring people and between people and walls respectively. The first
term represents the tendency to reach a certain velocity 

€ 

vi t( )  within a desired time

interval 

€ 

τ i  , this term can be interpreted as a ‘selfish’ term, which, in the case of this
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study, caused disastrous blocking at narrow entrances when the desired velocity is high.

(Fig. 8A)
It should be noted that beside the ‘selfishness’ effect, there is also a friction term

tangential to the direction of motion present in 

€ 

fij  which is critical to the clogging effect,

and is unique to this model.

The authors also reported an unexpected result during simulation, that clogging
can occur at widening of escape routes, as is shown in Fig. 8B, and can be avoided by

placing asymmetrically columns in front of exits.

Figure 8 : Simulating human exist panic A) clogging due to narrowed exit. B) clogging
due to sudden widening in escape routs. (Figure from [17])

Conclusion:
We have  noted that a lot of parameters and details in the models are defined

somewhat arbitrarily. This is partly due to the fact that experiments on collective behavior

of large groups of animals are hard to implement, and we are left with insufficient data to

fine tune these models. Details in the models can play a critical rule in the behavior of the

model. For example, it is shown in [18] that difference in means of incorporating noise

into the Vicsek model can cause different phase transition behavior. There also exist

phase transition behavior when the attract-align radius is varied continually. Although a

lot of rich behavior of mathematical model may not be biologically relevant, it is always

interesting to ask why evolution has shaped animals to behave as we see.

Another point worth noticing is that although it is now safe to say that a wide
variety of collective behavior is a result of individuals following SIMPLE rule, it is

almost equally possible that certain collective behavior can arise from COMPLICATED
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rules. [1] One should always keep in mind that animals are complicated entities

themselves, and any modeling attempt involves a certain degree of simplification that
might wipe out important details.

Lastly, one might notice that to this day, most of the efforts have been selectively
using observed behavior of single animal to regenerate group behavior. It is interesting to

ask if one could, by looking at group behavior of an animal group and make reasonable

guesses as to what individual behavior rules might exist in behind which is previously
unknown.
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