
Phase Transitions in Insect Populations

Luke Myers

December 13, 2006

Abstract

Abstract: This paper will examine recent work on the phase tran-

sitions that appear in collective behavior of insect populations. Basic

models will be defined and then compared with experimental results.

These results indicate that the collective behvior can be predicted with-

out having to model the complexity of the individual biological entity.
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I Introduction

Physicists have long been familiar with the concept of magnetism, the
ability of a non-magnetic material to become and remain magnetized after it
is exposed to an externally applied field [1]. It has also been shown that a
material will develop a magnetic moment as it is cooled below some critical
temperature even in the absence of an external magnetic field. This is a
simple, everyday example of a system with an emergent property. Recently,
the concept of emergent properties in biological systems has become an area
of increased study. Biologists have documented these phenomena and tried to
explain them in terms similar to those that describe physical systems. The
key concept is that the patterns or behavior of the group can be described by
considering the interactions between individuals or the interaction between an
individual and the environment without having to consider the complexity of
the animal [1].

This paper will look at the emergent properties of animal populations,
specifically insects [2],[3]. Ants, termites, wasps and locusts exhibit such be-
havior when foraging, migrating, or building a nest. Experimental results have
not only demonstrated the existence of these phases and their transitions, but
have also demonstrated some of the factors that lead to the particular group
behavior.

The first section will examine recent papers that document the behavioral
phases and transitions in ant colonies. Recent models will be discussed and
compared with experimental results. The second section will address recent
work on the phase transitions of marching patterns that have been observed in
locust populations. Also, a simple theoretical model that attempts to explain
the aggregation of locusts will be considered and its basic concepts discussed.
In the final section, we will consider how these results may be applied to
existing practical problems.

II Ant Trail Formation

To watch a solitary ant, it is hard to imagine that there is any pattern to
its motion. A single ant will wander wildly across its environment, but the
popular image of a column of ants marching between a food source and their
nest is common in our society. How is it that ants can form a stable marching
pattern when the natural tendency of every ant is to follow a random walk?

Biology has already provided part of the answer. As an ant moves, it leaves
behind a chemical (commonly called a pheromone) trail that other ants can
detect [1]. Other ants can pick up this trail and follow it, all the while leaving
behind their own pheromones, reinforcing the trail, and subsequently making
it easier for even more ants to detect the trail.

At first glance, this would appear enough to explain the ordered pattern of
marching ants. However, several factors work against a trail being sustained.
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The chemical the ants lay down to create the trail is volatile and will evaporate
quickly if it not reinforced by another ant [1]. In order to reinforce the trail,
another ant must first locate the trail while it is walking about randomly. If
the population is too sparse it is unlikely that another ant will discover the
trail before it vanishes and the trail will be lost. Likewise, there is also a
probability that an ant will lose a trail that it is following. This probability is
greater on a lesser reinforced trail [3]. These are factors that must be included
in even the simplest models of ant trail formation.
MODELS

An active walker model for trail formation was developed by Helbing, et al.

and has proven to be useful in describing the formation of complex structures,
biological aggregates and directed motion [4]. The particles in this system
are initially assumed to follow a random walk. However, an active walker is
distinguished from a random walker by its interaction with the environment.
Active walkers are able to change the environment within a particle’s local
region. In the case of ants this is done by leaving a chemical substance to
mark the trail. This marking can then be picked up by other active walkers
and allow a trail to be formed and strengthened.

Several adjustments were made to account for environmental factors that
limit trail formation. These include (1) the use of two chemicals to mark trails
depending on whether an ant is looking for food or has already found a food
source, (2) the possibility of an ant not reacting to a marker, (3) an inertia
to keep an ant moving in its current direction, and (4) the volatility of the
chemicals. Taking account of these physical behaviors, the active walker model
is shown to agree with observed trail formation of ant colonies [4].

The second model that is considered was developed by Beekman et al. and
is designed to predict the increase in the number of ants that are foraging at
a food source [3]. In this model, the increased number of ants, x, foraging
at a source which has a trail leading to it is determined as a function of the
following parameters:
1) the total number of individuals in the ant colony (n)
2) the probability per unit time that an individual ant discovers the food source
randomly (α)
3) the probability per unit time that an individual ant discovers the food source
by following a trail (βx)
4) the probability per unit time that an individual ant loses the trail is given
by s/(s+x)
Here α, β, and s are all constants related to characteristics of the environment
and individual ants. From this information, Beekman et al. were able to write
down a mean field equation (Eq.1) for the time rate of change of x. In seeking
equilibrium solutions dx/dt was set to zero and Eq. 2 was found [3].

dx

dt
= (α − βx)(n − x) −

sx

s + x
(1)

βx3 + (βs + α − βn)x2 + (s(1 + α − βn) − αn)x − αns = 0 (2)
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Figure 1: Increase in ants at the feeder [x] vs. Colony size[n], from model [3]

Immediately, it is clear that the number of ants, x, at the food source is a
nonlinear function of the colony size, n. The behavior of x is dependent on the
values chosen for α, β, and s. Specifically, for Eq. 2, there will be either one
solution or three solutions depending on the values of the given parameters.
Through observational data, realistic values for α, β, and s can be assigned.

If the equation for the increased number of ants at the feeder has only one
solution then the increase in the number of ants is continuous and the phase
transition is second order. However, as seen in Fig. 1, for the situations where
Eq. 2 has three solutions there are two equilibria that are stable (solid lines)
and one that is unstable (dashed line). The effect is that the phase transition
is first order. These results are tested in the Beekman et al. paper and will
be discussed in the following section.
EXPERIMENTAL RESULTS

The focus of this section is on the work done and published by Beekman et

al. The experiment was set up in the laboratory so that colony size could be
controlled and easily varied. Pharaoh’s ants were placed in a nest box within
a large plastic box that replicated a foraging environment. A single feeder
was placed in the box 50cm away from the nest box and filled with a sugar
solution. The reader is directed to the original article for the specific details of
the setup and the reasons for the choice of Pharaoh’s ants. For a given colony
size, measurements were made of the number of ants at the feeder at fixed
time intervals so as to determine the increased number that were foraging. A
control measurement was made without the feeder in place to determine an
approximate value for α, the probability of a random discovery of the food
source.

The purpose of the experiment was to determine the ability of an ant colony
to create and sustain a foraging trail as a function of the number of individuals
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Figure 2: Increase in ants at the feeder [x] vs. Colony size[n], from experiment
[3]

in the colony. It is important to note that, unlike the model, not all the ants
in the colony are looking for food. As expected from reason and theory, an
increase in colony size leads to an increase in the number of ants feeding at
the source. The results from this experiment are shown in Fig. 2.

For colonies of fewer than 600 ants, no increase in the number of individuals
feeding at the source is seen. This indicates that these small colonies are unable
to sustain a trail that leads to the feeder. In this scenario the only means for
the nest to locate food is by chance.

For colonies with more than 600 individuals, the results shown in Fig. 2
show that the number of ants at the feeder is increasing. These larger colonies
are capable of producing and sustaining a trail; however, as can be seen from
the results of the single trials (the crosses in Fig. 2) the existence of a trail
is not guaranteed just because the colony is larger than a critical size. Is this
evidence of the unstable equilibrium, and first order phase transition, predicted
by the theory and seen in Fig. 1B? Can the variability of the path stability
be explained in terms of other factors?

As mentioned earlier, in this experiment the number of ants foraging for
food was not necessarily the same number as ants in the colony. If the ran-
domly chosen nest for a given trial was constituted of a higher (lower) per-
centage of foragers than average then the nest would be more (less) likely to
form a trail than on average. This variability in the makeup of the nest could
be a cause of the observed instability of trail formation in intermediate sized
colonies. Likewise, the theory predicts that there is a range of colony size that
is in an unstable equilibrium. The tendency of the trail to form or disappear
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for these colonies is dependent on the initial conditions. In other words, a trail
should form if sufficiently many ants locate the source at the beginning. It is
unable to determine if the above results are conclusive proof of a first-order
phase transition in the foraging behavior of the ants. However, a second ex-
periment was performed by Beekman et al. to ascertain whether the behavior
of the colony exhibits a phase transition.

Beekman et al. directly compared the trail building of small (300 ants)
and intermediate (700 ants) sized colonies in trials with varying initial condi-
tions. The experimenters chose to adjust was the number of ants that initially
discover the food source. In order to do so, the feeder was initially placed next
to the nest box and remained there until a sufficient number of ants (20-40)
were feeding. At this point, the feeder was removed to the original distance
of 50cm and all subsequent measurements were the same as described above.
By positioning the feeder close to the nest and then moving it away the ants
are able to form an initial trail before resuming their normal foraging behav-
ior. The results of this experiment were then compared to the above results
when the ants discovered the food source randomly to determine if any phase
transitions were occurring.

The results for both colonies are shown in Fig. 3. In the small colony,
no statistically significant increase in the number of ants at the feeder was
observed when helped to start a trail. This is the same result as was seen
in the original setup when the ants discovered the feeder by chance. These
results indicate that a small colony is unable to either form a trail or sustain
an existing trail.

Intermediate colonies, though, display a different behavior. When helped
to form an initial trail, the number of ants at the feeder increase by an average
of 4.6±3.3. However, without an initial trail the increase was only 2.6±3.3.
As well, a similar effect can be seen by the distribution shown in Fig. 3.
The reader is again urged to read the original article for a discussion of the
statistical methods used to analyze the data.

The results of the trials done on intermediate sized colonies seem to in-
dicate that trail formation and maintainability are dependent on the initial
conditions. These colonies exhibit two stable foraging equilibria indicating
both a first order phase transition between disordered (no trail) and ordered
(sustained trail) feeding. The dependence on initial conditions are also indica-
tive of hysteresis, although this could be true for smaller or larger colonies
if the values of α, β, and/or s were different. (The theoretical prediction is
that hysteresis would occur for any system which has three solutions to Eq.
2.) In this experiment, the results obtained by Beekman et al. confirm the
predictions made by the theory that was described above.
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Figure 3: Distribution of [x] values for many trials [3]

III Locust Swarms

A solitary locust is an inconsequential pest to mankind. These solitary
locusts also prefer a state where they avoid other locusts. However, a change
can occur in locust behavior where the solitary phase is abandoned in favor of
a gregarious state. In this state, locusts are actively looking for one another
and large (∼109 individuals) swarms form. Plagues of locusts are capable
of destroying vegetation on the scale of tens to thousands of kilometers and
wreaking environmental and economic damage [5].

The discussion that follows will focus not so much on the processes that
cause these large swarms, but more so on how these large swarms are able
to migrate in such a uniform pattern. The first discussion will detail some of
the properties of a model that describes the self-ordered motion of a group of
individuals [6]. These individuals are commonly referred to as self-propelled
particles (SPPs). The last section will look at an experiment that was designed
to test the ordering of moving locusts. The phases were examined as a function
of density and the results compared to the predictions of the SPP model.
MODEL

The following model was developed by Vicsek et al. to describe systems
with particles undergoing interactions defined by basic biological rules. For the
model considered here, the behavior of the individual particles are governed
by a predetermined rule with fluctuations taken into account. This rule is
defined as follows: “[A]t each time step a given particle driven with a constant
absolute velocity assumes the average direction of motion of the particles in
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Figure 4: Simulated collective behavior for varying densities, noise [6]

its neighborhood of radius r with some random perturbation added.” (Vicsek
et al.)

This rule, although simplistic, is analogous to the one that governs the
spin magnets described in the introduction. At low temperatures, the mag-
netic spins tend to align in the same direction. In the SPP model, also, the
fluctuations are to be in analogy to random perturbations in the spin magnets
resulting from temperature.

Several simulations were run and reported by Vicsek et al. Their work is
based on the following equations:

xi(t + 1) = xi(t) + vi(t)∆t (3)

θ(t + 1) =< θ(t) >r +∆θ (4)

where vi is the velocity of given particle, which has a fixed speed v for all
times and a direction given by θ. The quantity 〈θ(t)〉r is the average direction
of all particles that are a distance r or less away from particle i . ∆θ is the
fluctuation term and is randomly chosen such that |∆θ| ≤ η

2
. The simulations

were done on systems of particles in a two-dimensional environment of area
L2 with periodic boundary conditions. The density of the system ρ= N

L2 is
constant and η is the noise in the system. By varying these quantities during
the trials collective motion can be examined.

Fig. 4 [6] shows the results of several simulated trials for a system described
by the above parameters. All these figures represent systems with N=300 par-
ticles where the particles current position and velocity are given by the arrow
and its recent path is the drawn curve. Fig. 4(a) is a representative initial
state with a random pattern of positions and velocities. Fig. 4(b)-(d) show
the system’s pattern after some time has elapsed for various density and noise
values. For a system of low density and low noise (Fig. 4(b)) the particles form
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Figure 5: Predicted alignment as a function of time from SPP model [2]

small, coherent groups. However, the groups are not correlated to each other.
The behavior of dense populations with large fluctuations (Fig. 4(c)) the par-
ticles are moving randomly. Lastly, in Fig. 4(d), populations with a high
density but with only small fluctuations exhibit correlated motion throughout
the entire population. This is the ordered state of collective behavior.

This model, its basic features, and predictions are the starting point for
the work done by Buhl et al.. The experimental setup and results of this paper
will be discussed below. Their model differs from the SPP model described
above in that this simulation is one-dimensional and the rules are given by [2]:

xi(t + 1) = xi(t) + v0ui(t) (5)

ui(t + 1) = αui(t) + (1 − α)G(< u(t) >i) + ζi (6)

G(u) =
u

2|u|
(u + 1) (7)

where a particle’s position is xi, its dimensionless velocity is ui, α is a weighting
factor, ζ is the noise term, and G is a function that defines the adjustment of
the velocity to the neighboring particles. The results of running this simulation
are shown in Fig. 5 [2]. The quantity Φt = 〈u(t)〉 is used to measure the or-
dering of the system and allows for experimental comparisons later. Fig. 5(A)
shows that the predicted behavior of a low density population is no sustained
collective motion (disordered state). For systems of intermediate density, Fig.
5(B), an aligned motion is expected. However, the direction of alignment is
predicted to randomly change. As seen if Fig. 5(C), high density populations
should exhibit a stable, aligned collective motion (an ordered state). These
conclusions are directly tested below.
EXPERIMENTAL RESULTS

Buhl et al. used desert locust confined to a ring-shaped environment to
test for the ordered and disordered states and any phase transitions between
the two. The locust were then observed over a period of time and the position
and orientation of each locust analyzed with computer tracking software. To
measure the alignment of the locusts the orientation angle had to be rigorously
defined. This angle, χ, is defined as the angle between the line from the center
of the ring to x(t) and the line from x(t) to x(t+1). The alignment is then
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Figure 6: Observed alignment as a function of time [2]

defined (where m is the number of moving locusts) as:

Φt =
2

mπ
Σm

i=1
χt

i (8)

The locusts were observed and at each time step the alignment was calcu-
lated. The results are shown in Fig. 6(A)-(C) [2] for low, intermediate, and
high densities, respectively. At low densities, the locusts do not exhibit any
sustained alignment. As the density increases the locust begin to display col-
lective motion. However, at these intermediate densities, the alignment will
spontaneously switch direction. At even higher density, though, the locust
have an aligned collective motion with a lifetime greater than the length of
the trials.

A comparison of the experimental results of Fig. 6 to the model simula-
tions (Fig. 5) seem to indicate that the model is an accurate prediction of
locust aggregation. However, much like the results of Beekman et al. , fur-
ther analysis was done in order to determine if observed transition between
ordered and disordered marching agreed with the SPP model predictions. To
this end, Buhl et al. generated the plots shown in Fig. 7 [2]. The experimental
(A,B) and theoretical (C,D) results are all in good agreement as the density
increases. Specifically, the distribution of the mean alignment (Fig. 7 A,C)
clearly move from a continuous spectrum to two well-defined peaks as density
is increased. It is clear that high density populations are strongly aligned in
either the clockwise or counterclockwise direction. Likewise, the time that is
spent in coherent motion (Fig. 7 B,D) should be longer than the observation
length.

In light of the experimental results published by Buhl et al. the validity
of the SPP model has been demonstrated for locusts and can be applied to
other societies that are governed by rules similar to those defined above. It
is therefore expected that other species will exhibit phase transitions between
disordered and ordered motion as density is increased.
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Figure 7: Mean alignment (A,C) and Time spent in aligned state (B,D) for
observed and modelled locust populations as a function of density [2]

IV Conclusion

The results of the work done by Beekman et al. and Buhl et al. verified
that the models in use are accurate predictors of phase transitions and ordered
behavior in insect colonies. The practical applications of these results are two-
fold. The active walker models can be extended to human traffic and can
be applied to pedestrian pathways in urban environments [4]. Likewise, the
SPP model has demonstrated that the collective motion of dense populations
is more predictable over time than the motion of smaller populations. The
predictability of denser populations may aid in identifying and controlling
locust destruction and allowing for better use of resources [5].

In a greater sense, the success of these experiments have shown the ability
of simple models to predict complex patterns and emergent behaviors. Most
notably, in the same way that one does not have to resort to quantum effects
to explain the emergence of magnetization, we have not had to account for the
ability of animals to think or use other complex biological behaviors in order to
explain the observed phase transitions mentioned above [1]. Perhaps, despite
the complexity of its members, biological systems can soon be understood in
terms of physical systems that are now familiar.
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