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Abstract

This paper tries to give a clear description of the motion of vortex and the vortex glass transitions

in high Tc superconductors from both theoretical analysis and experimental observation. Then a

controversy of the location of the vortex glass transition in high Tc superconductors is brought

forward by comparing different datum from different groups. A possible resolution is discussed

thereafter.
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I. INTRODUCTION

Superconductivity was discovered by Kamerlingh Onnes [1]in mercury at 4K in 1911.

Its perfect conductivity and perfect diamagnetism absorbed many scientists who dedicated

themselves to this field and obtained many great achievements. After a slow increase in

the highest known transition temperature Tc over the decades, reaching a plateau at 23K,

the discovery of high-temperature superconductivity by Bednorz and Muller in 1986 opened

a new chapter in the field of solid-state physics in general and in superconductivity in

particular. Currently, the highest Tc achieved in the YBCO, BSCCO, and TBCCO systems

are 93K, 110K, and 130K, respectively. These very high transition temperatures were of

obvious technical interest because they opened the way to applications which required only

liquid N2 cooling (77K), rather than liquid helium.

The new high-temperature superconductors are strongly type II and their phenomenology

is dominated by the presence of vortices over most of the phase diagram; see Fig.1. This

phase diagram comprises a Meissner phase characterized by complete flux expulsion at low

magnetic fields H < Hc1 , where Hc1 is the lower critical field which is mainly determined by

the London penetration depth λ,which is the length scale determining the electromagnetic

response of the superconductor. The vortex glass phase lies in the field range between Hc1

and irreversibility line (Tg(H)), where the magnetic field penetrates the superconductor in

the form of flux lines (or vortices), which form a triangular lattice. The magnetic flux

enclosed in a vortex is quantized in units of Φ0 = hc/2e ≈ 2× 10−7Gcm2, the flux quantum.

With increasing field the density of flux lines increases. When the vortex cores overlap

another phase, vortex liquid, appears in the range between the irreversibility line and the

upper critical field Hc2 , which is determined by the coherence length ξ of the superconductor.

Beyond this field we recover the normal metallic state. The upper critical field Hc2 indicates

the appearance of diamagnetism, but it is not a definite boundary.

It is necessary to discuss the irreversibility line in detail. Muller et al. [2] first found that

there existed a wide region of reversible magnetization below Hc2 , and a boundary, below

which the magnetization was hysteretic. This boundary is the so-called irreversibility line

which can be scaled as Hirr ∝ (TC − T )1.5 approximately. D.R. Nelson et al. [3] claimed

that the irreversibility line marks the transition of ordered vortex lattice to the vortex liquid

due to the great thermal fluctuations.
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FIG. 1: Schematic phase diagram in high Tc superconductors

II. MOTION OF FLUX LINES

Let’s look flux lines in an ideal homogeneous material first. When Hc1 < H < Hc2 , the

flux lines penetrate the material in a regular triangular array of flux tubes, each carrying a

quantum of flux Φ0. This vortex array was first demonstrated experimentally by a magnetic

decoration technique coupled with electron microscopy. [4] The force between flux tubes is

repulsive. In the presence of a transport current J ,the flux tubes experience a Lorentz force

~f = ~J × Φ0

c
(1)

which is the force on a single vortex and is analogous to the macroscopic force density

~J × ~B/c. It tends to drive the flux tubes move sideways. If they move with a velocity ~v,

they essentially induce an electric field of magnitude

~E = ~B × ~v

c
(2)

This acts like a resistive voltage, and power is dissipated. Bardeen and Stephen showed that

this flux motion is resisted only by a viscous drag. [5] Assume a viscous drag coefficient η

such that the viscous force per unit length of a vortex line moving with velocity ~v is −η~v.

Equating this to the driving force (1), we find the magnitudes related by

J
Φ0

c
= ηv (3)

Combing this with (2), we find that a type II superconductors show a resistance

ρf =
E

J
= B

Φ0

ηc2
(4)
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which is comparable to that in the normal state, only reduced by a factor B/Hc2.This

means that a pure type II superconductor is unable to sustain a persistent current unless

some mechanism exists which prevents the Lorentz force from moving the vortices. Such

a mechanism is called a pinning force since it ”pins” the vortices to fixed locations in

the material. Pinning results from any spatial inhomogeneity of the material since local

variations of ξ,λ, or Hc due to impurities, point defects, twin planes, grain boundaries, voids,

etc., will cause some locations of the vortices to be favored over others. It is the pinning

which allows the system to sustain the Lorentz force without flux motion and dissipation,

thus giving the material a nonzero critical current.

In 1962, Anderson claimed that the pinned vortex is not absolute static. [6] Two years

later, Anderson and Kim proposed a flux creep theory. [7] At finite temperature, the

thermally activated motion causes a bundle of flux lines to jump between adjacent pinning

centers. They assumed the bundle to jump as a unit because the range λ of the repulsive

interaction between flux lines is typically large compared to the distance between lines; this

encourages cooperative motion. Assume that the bundle lies in the bottom of the pinning

potential well with depth U0, where U0 is the difference of the Gibbs free energy of the

bundles bounded in the well and that of the bundles moving freely. When the driving force

is zero, the jump rate of the thermally activated bundle is given by

ν = ν0e
−U0/kBT (5)

where ν0 is some characteristic frequency of flux-line vibration. Since the jump rates along

both sides of the well are the same, there is no net motion of flux lines in the material.

When a flux-density gradient is introduced, the bundle experiences a Lorentz force ~fL =

(1/c) ~J × ~B. We can construct a energy UL given by

UL =
1

c
JBVcrp (6)

using the Lorentz force ~fL, the volume of the bundle Vc and the effective distance of the

pinning force. With the increasing of UL, the pinning potential tilts like a washboard; see

Fig.2. This will lead to a net hopping rate in the direction of the Lorentz force of

νnet = ν+ − ν− = 2ν0e
−U0/kBT sinh(UL/kBT ) (7)
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FIG. 2: Schematic change of potential along the direction of the Lorentz force. The curve on the top

corresponds to the zero Lorentz force; the one on the bottom corresponds to depinning(U0 = UL).

where ν0 would be the creep velocity if there were no barrier. The average velocity of

the creep of the bundle is v̄ = νnetl, where l is the average distance of the jumping of

bundles.Then the induced electric field of the creep of the bundle is given by

E = νB/c =
2ν0Bl

c
e−U0/kBT sinh(UL/kBT ) (8)

In the limit of small transport current, (8) becomes

E =
2ν0B

2lJVcrp

c2
e−U0/kBT (9)

We observed this Ohmic dissipation in the high temperature oxide superconductor. When

the Lorentz force exceeds the pinning force, the vortices move in a rather steady motion and

give a flow resistivity ρf , which is comparable with ρn.

Bardeen-Stephen model discusses the effect of the viscous drag, while Anderson-Kim

model emphasizes the effect of thermal fluctuations on the system; to the extent, both

models are reasonable and show that motion of the flux lines leads to dissipation. Then an

important question is whether the flux lines can be collectively pinned by defects sufficiently

strongly that they have no linear response to the Lorentz force. This zero resistance state

was first proposed for bulk superconductors by Fisher [8] and called the vortex glass.
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FIG. 3: An excitation of a single pinned vortex line. The dashed line represents the initial configu-

ration, the dotted line is the final configuration, and the solid line is the vortex loop. The transport

current is assumed to be normal to the paper.

III. VORTEX GLASS MODEL

In the Bardeen-Stephen model [5] and Anderson-Kim theory of flux creep, [6] each vor-

tex line or bundle of lines is effectively modeled as a single, approximately independent,

zero-dimensional ”particle”; the pinning potential depends on the applied current J . How-

ever, the elastic deformation of flux line has an important effect on the pinning potential.

M.P.A.Fisher [8] proposed a theory of the possible existence of a vortex glass phase transi-

tion based on the effect of the random point disorder, which underlies the collective pinning

and vortex glass model. Fisher et al. [9, 10] has discussed it extensively. This theory claims

that a vortex liquid phase, with linear resistance, experiences a second-order transition to

a vortex glass phase, with zero linear resistance, in bulk disordered superconductors at a

well-defined glass-melting temperature Tg. Therefore, the vortex glass phase is a true su-

perconductor. Let’s illustrate this point by first considering a single, infinitely long, vortex

line in the presence of random pinning.

In the presence of a transport current ~J , the vortex line experiences a Lorentz force which

deforms it. Since different parts of the vortex line experience different pinning forces, the

entire line can not move with the same velocity, but move with an excitation of vortex loop;

see Fig.3. The superposition of the initial configuration of the vortex line with the excitation

induces the motion of the part of it. The transverse displacements of the vortex-line segment
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of length L is L⊥ ∼ Lζ with an exponent ζ ' 0.6. Then the length of a typical loop is ∼ Lθ,

and its area is ∼ Lk, where θ is some exponent and k = 1+(1/ζ). The vortex loop will have

free energy given by

Ftension ∼ γLθ (10)

where γ is a stiffness coefficient. The transport current exerts a free energy

Fcurrent ∼ −JLk (11)

on the vortex loop. So the total free energy change of the vortex loop is given by

Ftotal = Ftension + Fcurrent ∼ γLθ − JLk (12)

The extremum of Ftotal gives the size of the vortex loop given by

Lopt ∼ (
γθ

kJ
)

1
k−θ (13)

To obtain the excitation from the ground state by continuous deformation, the vortex line

will typically have to pass over a free-energy barrier

U ∼ ∆LΨ
opt ∼ J−µ (14)

where exponent Ψ ≥ θ and µ = Ψ(k − θ) ≤ 1. Motion of the vortex line will proceed via

thermal nucleation of loops of size Lopt at a rate υ ∼ exp(−U/T ). This motion causes a

steady-state dissipative electric field

E(J) ∼ υ ∼ e−(JT /J)µ

(15)

where JT ∼ γ(∆/T )1/µ. Eq.(14) and Eq.(15) show that U → ∞, forJ → 0, thus the linear

resistance disappearances. So the vortex glass state is a true superconductor. Fisher claims

that the point pinning induces divergent potential and vortex glass is the consequence of

the divergence of potential. The concept of the excitation of vortex loop can be applied to

the interaction of vortex lines in vortex glass phase. Any local excitation of the vortex lines

can be described in terms of one or more vortex loops relative to the initial state; see Fig.4.

The transverse size of the vortex loop is one vortex spacing.
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FIG. 4: Excitation of a multiple vortex-line array. The dashed lines represent the initial configura-

tion, the dotted lines are the final configuration, and the solid line is the relative vortex loop. The

transport current is assumed to be normal to the paper.

IV. VORTEX GLASS TRANSITION AND EXPERIMENTAL EVIDENCE

The above section gives a detail description of the vortex glass phase.Note that disorder

destroys the crystalline long-range order of the flux-line lattice [11]beyond a correlation

volume Vc,within which there is short-range order, predicted by mean field theory. Then a

question is: Is there a well-defined glass-melting temperature Tg which marks the second

order transition from the vortex-liquid phase(ρf 6= 0) to the vortex-glass phase(ρg = 0)?

Fisher et al. [8–10] approach the vortex-glass critical temperature Tg by means of scaling

analysis. They claim that the vortex-glass phase correlation length ξg diverges at Tg as

ξg ∝ |T − Tg|−ν (16)

where ν is a single exponent defined. The critical slowing down of the characteristic relax-

ation time τg is given by

τg ∝ ξz
g (17)

where z is another exponent defined. They argue that the electric field should scale as

1/(length× time) and that J should scale as 1/(length)D−1. Thus, they obtain the scaling

hypothesis

Eξz+1
g ≈ E±(JξD−1

g ) (18)
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(a) (b)

FIG. 5: Excitation of a multiple vortex-line array. The dashed lines represent the initial configura-

tion, the dotted lines are the final configuration, and the solid line is the relative vortex loop. The

transport current is assumed to be normal to the paper.

where E± are scaling functions for temperatures above Tg and below Tg respectively and D

is the spatial dimension.

According to this scaling hypothesis, they predict that in the vortex-glass phase below

Tg, the nonlinear electric-field response to a current density J is of the form

E(J) ∝ e−(JT /J)µ

(19)

where JT ∼ γ(∆/T )1/µ and µ ≤ 1. At the vortex-glass temperature Tg, they predict a

power-law I-V characteristic curve with

E(J) ∝ J (z+1)/(D−1) (20)

Finally, they predict that for T > Tg, the I-V characteristic at very low current levels should

behave linearly near Tg. This is a critical issue in testing the model.

Koch et al. [12, 13] confirmed these predicts by measuring the I-V characteristic of the

YBCO epitaxial thin film at different temperature in a strong magnetic field (H À Hc1);

see Fig.5a. At a single well defined temperature T, which is defined as Tg, the I-V curve

is a straight line which is consistent with the prediction of the power law at T = Tg. At

T > Tg,the I-V curves have positive curvature. At T < Tg, the curvature of the I-V curves
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(a) (b) (c)

FIG. 6: Collapses of the I-V isotherms for a 2200ÅYBCO film in 4T using various critical parameters

with experimental windows denoted. [16]

is negative which is consistent with the prediction Eq.(19). We can see this below. Frow

Eq.(19), we get

∂2lnE

(∂lnJ)2
= −µ2(JT /J)µ (21)

which shows that the curvature of the lnE − lnJ curve is always negative at T < Tg. The

striking dc I-V data collapse shown in Fig.5b strongly supports the theory of vortex glass

transition of Fisher [8–10]. Gammel [14] et al. showed the same experimental evidence

latter.

The same experimental law was observed by many different groups. Fisher claims that

this is a strong evidence of the vortex glass state and calls the phase below T < Tg vortex

glass. The phenomena of the change from the positive curvature to the negative curvature

can’t be explained by the Anderson-Kim flux creep theory and the logarithmic potential

model [15]. The nonlinear response function of the Anderson-Kim theory is E ∼ sinh(J/J0)

which shows that the lnE−lnJ curves have a positive curvature, and the one of the logarith-

mic potential gives lnE ∼ (U0/kBT )ln(J/Jc), thus the lnE − lnJ curves have no curvature.

V. AN CONTROVERSY AND POSSIBLE RESOLUTION

Though it has so many experiments supporting, the vortex glass transition theory has

met serious doubt recently. Strachan et al. [16] show wide range accurate isothermal I-

V measurements over 5 or 6 decades and find although the I-V isotherms measured in a

strong magnetic field can be collapsed onto scaling functions proposed by Fisher et al. [9],
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(a) (b) (c)

FIG. 7: Collapse of the simulated I-V isotherms using various cirtical parameters compared with

the experimental I-V isotherms for a 2200ÅYBCO film in 4T measured by Strachan et al. [17]

these excellent data collapse can also be achieved for a wide range of exponents and glass

temperature Tg as demonstrated in their Fig.2(a),2(b)and 2(c); see Fig.6. Thus they argue

that the scaling criterion in the literature [12] can’t determine the critical temperature Tg

uniquely and especially the scaling function of the I-V characteristic V− ∼ exp(−1/xµ) of

the vortex solid may not be right.

X. Hu et al. [17] show that dc current-voltage characteristic of mixed state superconduc-

tors has the general form of extend power law given by

y = xexp[−γ(1 + y − x)p] (22)

where

γ =
Uc

kBT
(
Jc

JL

), x =
J

JL

, y =
E(J)

ρfJL

, p = µ

The numerical solution of (22) has a fair agreement with the wide-range experimental data

of Ref.[16]; see Fig.7. They argue that the general extended power law (22) is helpful in

settling the controversy. However, they also don’t give a criterion to decide the vortex glass

transition temperature Tg. Thus, one expects a reasonable theory to describe the vortex

glass phase completely.

VI. CONSLUSION

We have briefly surveyed the motion of vortices in a mixed state of superconductor and

the vortex glass transition. Bardeen-Stephen model discusses the effect of the viscous drag
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on the vortices. Anderson-Kim model emphasizes the effect of thermal fluctuations on the

system. Vortex glass model claims that there is a second order transition from the vortex-

liquid phase(ρf 6= 0) to the vortex-glass phase(ρg = 0). The interest point is the controversy

on the vortex glass transition between two groups. X.Hu et al. [17] proposed a possible

resolution to the controversy, but it is not complete. A correctness of the vortex glass

picture may be required.
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