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Abstract 

 
Liquid crystals have various phases such as nematic, cholesteric, smectic A, 
smectic C with combination of the positional and orientational order. Theories about 
elasticity of different phases are developed intensively as well as study of phase 
transition. In this termpaper, properties of smectic phases in elastomers and 
transition from smectic A to smectic C with spontaneous shearing are presented. 
Experimental results are introduced to be compared with numerical results. 
 

 

 

 

 



I. Introduction 
 

When shape of liquid crystalline elastomer is changed without energy cost, it is 
called soft elastic modes [1]. Constant rotation of the distribution of chain shapes 
with constant entropy and nematic energy with adapting the body shape to the 
chains cause soft modes [2]. Deviation from ideal symmetry requirements makes 
semisoft property and this causes quantitatively different soft deformation [3]. 
Shape is changed with rotating director by soft deformation [1]. Softness is 
removed after the director is fixed perpendicular to the layer and loses its freedom 
of mobility. Since the orientation of the polymer shape tensor is not directly related 
to the constraint on the layer spacing in the SmC phase, additional freedom for 
softness is appeared in the director. Biaxial SmA has less experimental interest 
even though it has sufficient freedom and simple phase theoretically. In 
monodomains of SmA and SmC phases, the required deformation tensor is 
calculated to provide clear geometrical forms of soft modes in Sec. II. 

Since nemaic liquid crystal has orientational order, chain shape can be 
elongated [4]. Spontaneous mechanical strains that are induced by order change 
are related to orientation and shape. Temperature and illumination can affect the 
order, and cause thermal or optical actuation. Spontaneous shape change decides 
the range of strains over which soft elasticity is occurred and is an essential 
property to know the anisotropy. In ideal system, shape change can be happened 
with no energy cost. That is, some elastic moduli are vanished and restoring forces 
along certain symmetry directions are absent [5]. A director n denotes the direction 
of orientational order of nematic elastomers. If strain is imposed in a plane of 
direction of director, the soft elasticity is occurred. Since entropy and nematic order 
is constant, macroscopic shape change is occurred with constant free energy [3,6]. 

A change of magnitude of the orientational order causes spontaneous shape 
change in nematic elastomers [4]. However, shape change from the transition SmA 
to SmC is determined by spontaneous rotations of the director of the imposing 
nematic order. In the SmA phase, an orientational order is parallel to the layer 
normal. When the AC transition is started, the director starts to rotate around the 
layer normal by an angle θ. The angle of molecular tilt is not simply associated with 
the angle of shear. Analysis from Ref. [7] shows that the tangent of the 



spontaneous shear angle is same as the tilt angle times the ratio of two elastic 
constants for small tilts. However, a nonlinear, Lagrangian elastic analysis shows 
more complicated connection for the spontaneous shears at and below the SmA-
SmC transition [8]. In Sec. III., this connection is investigated up to large tilts in 
nonlinear regime and elastomers, where layer spacing is strongly constraint and 
restricts spontaneous deformation, are studied. In Sec. IV., experimental results are 
compared with numerical results from Sec. III. 
 
 
II. Smectic A and Smectic C Elastomer Model 
 

The elastomer is composed with polymer chains and an anisotropic Gaussian 
distribution can express this model [1]. This model assumes that chains are long 
enough and cross-link matrix is rubbery and extensible. In addition, the presence of 
layers in smectic phases makes a periodic potential that affects to the cross-link 
point. Therefore, homogeneous potential of the cross-link point distribution only 
exists within the plane of the layers. Then shape changes of the rubber matrix 
induce the alteration of smectic layer spacing and smectic elastomers should have 
an additional modulus. Smectic elastomers, 
surprisingly, has rubbery-like behavior in 
two dimensions and solid-like in the third. 
When large strains occur to smectic 
elastomers, they show rotational 
instabilities. Experiment [10] and theory [9] 
show good agreement in SmA elastomer.  
    It is assumed that a smectic elastomer is composed of cross-linked polymers 
as microscopic models of nematic elastomers [1]. The layer spacing can be 
described by 
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where T−λ  is the inverse transpose of the deformation matrix, k0 denotes the initial 

Fig. 1. The initial direction n0 of chain shape 

distribution is rotated to a perpendicular n. An 

intermediate state direction at θ is also shown [1]. 



direction of the layer normal in the solid, k0= q0/q0 (q0=initial wave vector, q0= the 
wave vector magnitude), d is the current layer spacing. The free energy density 
can be calculated by adding the smectic layer modulus to the rubber-elastic free 
energy terms. 
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Here, B denotes the smectic modulus associated with deforming the layer spacing. 
In Eq. (2), both terms are positive. The second term should be vanished since 

energy cost is zero. Therefore, d=d0 and λ  obeys following constraint. 
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In general, soft modes of nematic elastomers are expressed by 
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where W  denotes a general rotation matrix, 0l  is the initial anisotropic tensor, 

and nl  is the current anisotropy tensor that is depend on director n. If one multiply 

TWW ⋅  from the left, soft mode (4) becomes 
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Therefore, one can know that shape change of soft deformation is determined by 
the particular vector n'. The vector n' can be chosen anywhere on the surface of 
unit sphere and the way of soft deformation of smectic phase has less freedom 
than that of nematic phase because smectic phase has additional constraint of the 
layer spacing. 

By adding a biaxial polymer shape tensor, l , biaxial SmA elastomer can be 

modeled [1].  
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Rotation of director is performed through an axis perpendicular to n0 in the soft 
mode of Fig. 1. Since the layer normal k and the director n is same in SmA 
elastomer, Eq. (3) becomes 
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Then combination of general soft mode (4) and constraints (7) shows 
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where ⊥= ll /||r . So this equation has solution n=n`= ⋅W n0 and substituting this 

W  to Eq. (4) produces the result W=λ . It means that there is no shape change in 
the body. Then the primary alignment director has no freedom to rotate and 
uniaxial SmA elastomer cannot have soft mode. However, biaxial SmA elastomer 
has unconstraint secondary alignment axes, so it can have soft mode. In 
conclusion, biaxial SmA elastomer has soft mode that can be decomposed into a 
body rotation, which means that the primary alignment axis is constraint but the 
secondary alignment axes can be deformed from their initial orientation. 

The main characteristic of SmC elastomers is 
that the director is biased with respect to the layer 
normal [1]. Fig. 2 shows schematic diagram of SmC 
elastomers. A tilt angle θ Is described by 

θθ sincos ckn +=             (9) 
Since the SmC phase has two different directions, 
the polymer shape shows anisotropy. Therefore 
shape tensor is also biaxial. However, when the 
biaxial arrangement of a uniaxial l  is biased at a 
certain angle perpendicular to the layer, soft elasticity is already found. At first, to 
describe general form of soft mode for SmC elastomer, a new vector w0 is induced. 

Fig. 2. The director n is biased 

along the layer normal, k, by 

angle theta in SmC elastomer [1].
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n0, k0, and w0 is located in the same plane and w0 is located between n0 and k0 
when r >1. If one use w0 into the general soft mode (4) with Eq. (3), one obtains 
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Using w0
2=1+(r-1)cos θ, the equation of two planes where the point of the director 

n is located can be expressed by 

( ) θcos0 rnwW T ±=⋅⋅                        (12) 

Therefore, they are located at distance 2/12 )tan/11/(1 θr+±  from the origin and 

have vectors perpendicular to the 0wW ⋅  direction. The transformed layer wave 

vector 0qq T ⋅= −λ  is normalized and 
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When d/d0=1, Eq. (3) is satisfied equally. But in case of a specific soft deformation, 
a particular W  in Eq. (4) should be chosen. At first, soft modes are analyzed 
without W  and then modes that include W  are studied following part.  
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. (a) An illustration of soft mode of SmC elastomer without W  [1]. 

(b) The first stage of a general soft mode: rotating the initial director n0 around to n [1]. 

(c) The second stage of a soft mode: rotating with respect to the axis R [1]. 

(a) (b) (c)



Soft modes of a SmC elastomer without W  matrix indicate that the final 
director should be located on the intersection of the unit sphere and the planes of 
Eq. (12) [1]. Fig. 3(a) shows an illustration of this. If the final orientation of director 
n does not lie on the circle of solid line in Fig. 3(a), a proper W  should be included. 
From Eq. (5), we can replace n to n` and Fig. 3(b) shows a director n’. A matrix W  

can be decomposed by two rotations, ( )ξ
0wR WWW ⋅=  where the latter is a 

rotation by ξ about w0 and takes n` to n0, and 
R

W  takes n0 to n. Then, 
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In this equation, soft mode is parameterized by the angle ξ and final director is 

determined by n= ⋅RW n0. As one can see Fig. 3(c), final director is not limited to the 

circle.  
 
 
III. Spontaneous deformations on SmA to SmC Transitions 
 

Monodomain samples are 
needed to get spontaneous 
distortions that are induced by order 
change caused thermally [4]. If 
chains are cross-linked in nematical 
order or surface alignment in thin 
samples is exploited, one can have 
nematic monodomain elastomers. 
However, Finkelmann [12]’s method 
is widely used. At first, sample is 
partially cross-linked therefore it 
shows enough rigidity to hold. When 
it is stretched uniaxially, cross-linking 

Fig. 4, Schematic diagram for preparation of smectic 

monodomain and optical micrograph of elastomer [11].  



is completed. Then it is released to have a new stress-free, equilibrium state. This 
state can be a standard state for the measurement of any strains due to 
temperature change. Applied stresses should change this equilibrium state. The 
fraction ξ of chains are linked in the first stage and they are under tension. 
Although previous state tend to contract, the fraction (1- ξ) linked in the second 
stage do not want to contract. Since it makes them to extent in the plane normal to 
the stretch direction, their energy would be increased. Actually, these residual 
strains are almost same as the fraction (1- ξ) of the second stage linkage strain. 
The deformation gradient is 0/ XX ∂∂=λ , where X is the current position(in the 
target space) and X0 is original position(in the reference space). In the case of 

uniform distortion, the diagonal elements of λ  indicate the ratio of a current 

dimension to the imposing original dimension. The off-diagonal elements are 

described by simple shears. The deformation gradient 
1

λ  is applied after the first 

step and this is a simple, constant volume, and layer-preserving shear. 
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Here, δ  denotes unit tensor, m is the direction in the smectic planes of 

displacement in the shear, and n0 is the initial director which is parallel to the layer 
since we start in the SmA phase. From Ref. [13], free energy density for isotropic 
rubber of multistage linking is 
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Here λ  denotes the total deformation and A  is the composite second-rank 

tensor. Deformation connecting the initial state and relaxed state is denoted rλ . 

Deformation related with relaxed shape is 'λ . Therefore, 
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Using (15) to Eq. (14), 
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A shear deformation 
1

λ  occurred in second stage cross-

linking indicates that a sample cannot have its original 

shape again, but retains a residual deformation rλ [4]. For 

small shears, extensions and contractions that are 
projected into the layer planes are same. So nothing is 
happened. However, for large shears, the extension 
diagonal lies on close to the layer plane and the system 
tends to contact with the in-plane direction when released. 
The value of 2

1λ  determines the magnitude of contraction. 
Since layer spacing is constant, xx is the only possible contraction reaction. The 

final relaxed shear r
xzλ  is less than 1λ  because of this contraction. The director is 

parallel to the layer in the SmA phase. This director is evenly anchored to the 
equilibrium rotate angle and can be endured with other mechanical pressure. With 
the deformation gradient 'λ , of the relaxed SmA state, the free-energy density 
becomes  
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To minimize free energy, one can get following relations. 

( ) ( )[ ]θθθλ 2sin1/cossin1' −−−= rrrxz                    (18) 

Fig. 5. Bold shape 

represents SmA 

elastomer with λxz shear 

and faint line represents 

initial shape [4]. 



( )[ ] 1sin1/' 4/124/1 >−−= θλ rrrxx                       (19) 

Substituting these deformations to the free energy, one can get free energy 
induced by rotating the director: 
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Nonideality is appeared when compositional fluctuation and rigid rod cross-links 
are combined to ideal model [4]. This is called semisoft. It seems that nonideality 
has no large effect and it is indicated by the degree of semisoftness, α. Then free 
energy for nonideal soft elasticity becomes 

 [ ]λλμαα ⋅⋅⋅= ssBTrf T
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The relaxation due to cross-linking and that created by increasing tilt on cooling 
in the SmC phase are presented here [4]. Fig. 6(a) shows in-plane elongation of 
SmC elastomers by biased angle θ on cooling. Same shear, λ1=0.3 at second 
stage linking, is used for both systems r=2.5 and r=4.5. Nonideality fraction α=0.3 
and a first linkage fraction ξ=0.5 are used in this calculation. Fig. 6(b) shows simple 
shear caused by the director tilt. These results are also observed by experiments 
[14]. It is predicted that shear approaches its maximum with increasing tilt angle. 
The angle of shear distortion, θE, recorded after relaxation on second linkage is 
shown in Fig. 6(c). Same cross-linking shear is imposed for each pair of curves. 
The dashed line means how mechanical and molecular tilts diverge from each 
other because of cross-linking. For large tilt one can see that the slope dθE/dθX 
shows lower than 1/2. These results are identically reproduced by experiment [14]. 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IV. Experimental Results 
 

The deformation of chiral 
smectic C (SmC*) elastomers are 
not studied well yet [14]. The 
monodomain SmC* elastomer 
produced by a mechanical shear 
field shows a biaxial shape 
memory effect. This means that 
by heating and cooling process 
during phase transitions 
spontaneous and reversible 
deformation is occurred. Shear deformation related with molecular tilting in the 
smectic phases is observed in this section. Using X-ray scattering observation, the 

Fig. 7. Schematic model shows relation between macroscopic 

shape of elastomer and molecular realignment [14].  

Fig. 6. (a) In-plane elongation caused by tilt θ on cooling into the SmC phase [4]. 

(b) Simple shear induced by tilt θ on cooling into the SmC phase [4]. 

(c) Shear angle θE of SmC against director tilt θ [4]. 

(a) (b)

(c)



fundamental of the spontaneous and reversible deformations of the SmC* 
elastomers are studied. For monodomain SmC* elastomer, the shape of the 
elastomer film determines the macroscopic symmetry and the X-ray scattering 
shows that this symmetry matches to the local symmetry induced by molecular 
alignment.  

The distance between polyimide tapes is symbolized as the sample length LE 
and angle between the edge of the film and the direction of the first uniaxial 
deformation is denoted by tilt angle θE [14]. Fig. 8(a) shows the behavior of tilt 
angle of elastomer as a function of temperature. Tilt angle at around 40℃ 
decreases as temperature increases during SmC*-SmA transition and tilt angle is 
around 10˚ in the SmA phase. In the reverse order, tilt angle shows same value as 
heating process and it gets initial condition again. It seems that SmC* elastomer 
can restore its shape spontaneously. Furthermore, this shape memory effect is a 
biaxial deformation procedure caused by the spontaneous shear deformation. For 
the next step, X-ray scattering is performed to find out the relation between 
macroscopic shape changes and molecular re-alignment process. The behavior of 
molecular tilt angle θX with respect to various temperatures is in Fig. 8(b). At room 
temperature (25℃) the tilt angle is about 25˚ and it decreases quickly as 
temperature increases in the SmC* and SmA phases. This curve shows same 
manner as the tilt angle of elastomer film θE. Therefore, the shape of elastomer film 

Fig.8.  (a) The tilt angle θE is plotted as a function of temperature [14]. 

(b) The molecular tilt angle θX measured by X-ray scattering is plotted as a function of temperature [14]. 

(c) Nonlinear relation between the molecular tilt angle θX and tilt angle θE of elastomer film [14]. 

(a) 

(b) (c) 



is closely related to local symmetry of elastomer. It also shows same behavior that 
tilt angle on cooling process is very similar with that on heating process. Fig. 8(c) 
shows change of θE as a function of θX. In this figure, nonlinear relation between θE 
and θX can be observed. According to their hypothesis, emergent of nonlinearity is 
not because of mesogens but because of the topology of cross linkers. The slope 
of curve is steep in the temperature region between T` and TCA. In this region, 
topology of cross links causes internal shear stress and retains the layer tilting 
despite the constant layer thickness. Therefore, it turns out that cross linkers 
dominate the tilting condition due to constant tilt angle of mesogens. The 
deformation of cross linkers causes the shape change because cross linkers make 
polymer networks to form sample shape. Meanwhile, the slope becomes slow in 
region less than TCA. In this region, number of mesogens almost eight times larger 
than number of cross linkers, so mesogens start to dominate deformation with a 
decreasing layer thickness.  
 
 
V. Conclusions 
 

A geometrical analysis of the soft modes for two phases of smectic elastomers 
have introduced in this paper [1]. The director has only one soft trajectory as a 
result of limitation of fixed layer. Monodomains of SmA and SmC were studied to 
understand soft modes. The two-step cross-linking of smectic elastomers with 
shearing have also modeled [4]. When thermal transition between SmA and SmC 
is occurred, smectic elastomer shows spontaneous elastic shear deformation. If 
shears are large, nonideal theories should be included. Lagrangian elasticity 
models can explain nonlinearity of soft elasticity [8]. A molecular-based model 
which can also show theoretical evidence for nonlinearity have introduced in this 
paper. Experimental results [14] have compared with numerical results [4] and they 
made good agreement. 
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