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Abstract

The blue phases refer to a group of very unique thermodynamically stable phases
observed in chiral nematic liquid crystals that exhibit orientational order. These
phases are found to appear over a very narrow temperature band in between the
isotropic and helical phases of such crystals. In fact, the phase diagram will reveal
that there are three such phases. In this essay we will be exploring the origin of
such phases using both experimental and theoretical studies. We will be discussing
the various aspects of such phases that have already been explained and in addition
will also highlight the many unexplained anomalies.

Contents

1 Introduction 3

2 Experimental observations 4

2.1 The order of transition in blue phases . . . . . . . . . . . . . . . . . 5
2.2 Important properties of blue phases . . . . . . . . . . . . . . . . . . 6

2.2.1 Elastic shear modulus . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Viscoelastic properties . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Electric field effects . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Structure of blue phases . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Theoretical models 7

3.1 Ginzburg-Landau theory . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.1 Order parameter . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.2 Free energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Two limiting cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 Low chirality limit . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 High chirality limit . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Phase diagram 12

5 Concluding remarks 13

1



LIST OF FIGURES 2

List of Figures

1 Platelet structure of the BP II phase. Source: Hekimoglu and Conn

Liq. Cryst. Today 12, 3(2003), 1-2. . . . . . . . . . . . . . . . . . . . . . 4
2 BPSm1 phase observed through polarizing microscopy. Source: Grelet

Liq. Cryst. Today 12, 4(2003), 1-5. . . . . . . . . . . . . . . . . . . . . . 4
3 High-resolution heat-capacity measurements for the blue-phase re-

gion of cholesteryl nonanoate. Source: [19]. . . . . . . . . . . . . . . . 5
4 Kinematic viscosity measurement of cholesteryl nonanoate. The solid

line is for a concentration ratio that shows BPs. Source: [18]. . . . . . 5
5 Single crystals of BP I showing well-defined facets. Source: [19]. . . . 7
6 The orientation of the director field in a double twist structure.

Source: [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7 The arrangement of double-twist cylinders in the O2 structure. Source:

[19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
8 The arrangement of double-twist cylinders in the O8 structure. Source:

[19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9 The wave vectors of the icosahedral model. Source: [19]. . . . . . . . 12
10 A theoretical phase diagram. Source: [17]. . . . . . . . . . . . . . . . 12
11 Phase diagram obtained via experiments on CE5. Source: [19]. . . . . 13
12 A schematic phase diagram showing the location of the isotropic–BP

III critical point (P). Source: [12]. . . . . . . . . . . . . . . . . . . . . 13



1 Introduction 3

1 Introduction

Liquid crystals, as the name suggests are substances that exhibit material proper-
ties which lie in between conventional liquids and crystalline solids. Unlike isotropic
liquids, in liquid crystals some crystal-like ordering exist at least along one spatial
direction. Hence, these are systems where some degree of anisotropy should always
be present. This is brought about through the constituting molecules being geomet-
rically anisotropic, which are either rod-like or some times disk-like. Liquid crystals,
in general, have some degree of orientational order and in some cases partial trans-
lational order, although the periodicity of solids is absent. The liquid-crystalline
phase is also referred to as a particular case of a mesophase.

The fluid mesophases are classified into the lyotropics and the thermotropics [17].
In this essay we will only be concerned with the latter. Thermotropic liquid crys-
tals undergo phase transitions on being heated. Thus the solid crystal first melts
into a turbid liquid-crystalline phase, which becomes clear (isotropic) on further
heating. Thermotropic crystals possessing long-range order of the mean molecular
orientations, but lacking any long-range translational order are normally classified
into nematics and cholesterics. There are also smectics which can have translational
order. The constituent molecules in a nematic have inversion symmetry. Even if
chiral molecules are present, they are equally distributed among the two handed-
nesses to form what is known as a racemic mixture and so the fluid remains inversion
symmetric. Now, when the constituent molecules are chiral with the left and right-
handedness not being equally represented, the liquid crystal becomes cholesteric.
Following [19], we will refer cholesterics as chiral nematics. Chiral nematics are
known to show at least two different ordered phases. One of them is called the
helical phase, while the other is known as the blue phase.

The phase diagram of nematic liquid crystals is quite simple, since there exists
only one kind of ordered phase in such materials. Chiral nematics on the other
hand, at lower temperature, have the helical phase as a stable equilibrium phase.
At sufficiently higher temperature they become isotropic liquid. In some chiral
nematics, in between these two phases, over a very narrow temperature band of a
degree or so blue phases (BPs) appear. Three such blue phases have been identified
till now after studying a wide variety of chiral nematic materials. The two low
temperature blue phases, called BP I and BP II have cubic symmetry, whereas
the highest temperature one, called BP III is amorphous. Although the BP I and
BP II phases are commonly seen, the BP III phase is found only in systems with
very short pitches. The typical transition temperatures are of the order of several
hundred degrees.

In this article, all of the blue phases that we are going to describe belong to the
“classical blue phase” league. These are the blue phases of chiral nematic materials.
However, blue phases have also been discovered in smectics [11, 6]. The main
features of these smectic blue phases are that they exhibit both three dimensional
orientational order, like classical cubic blue phases and also the smectic positional
order. One of the smectic blue phases has been proven to be hexagonal [15], which
shows that these are not merely classical blue phases with smectic fluctuations.
These smectic blue phases have been observed in between the isotropic liquid and
the so-called twisted grain boundary phase. The latter is a new kind of material
combining chirality and the smectic order (see for example [5]).
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Figure 1: Platelet structure of the BP
II phase. Source: Hekimoglu and Conn Liq.
Cryst. Today 12, 3(2003), 1-2.

Figure 2: BPSm1 phase observed
through polarizing microscopy. Source:
Grelet Liq. Cryst. Today 12, 4(2003), 1-5.

The most striking feature of these blue phases, as their name suggests, is their
display of bright colors (see Figs. 1 and 2). This is in contrast to the isotropic and
helical phases lying on either side of the phase diagram which do not possess any
such ability. The blue phases have pitches of several thousands of angstroms, which
enable them to Bragg-scatter visible light. The BP I and BP II phases consist of
brightly colored wrinkled flakes, which are called platelets (Fig.1). These are nothing
but domains of crystalline blue phase ordering, and the bright color comes from the
scattering in the direction of the observer of those wavelengths which satisfy the
Bragg condition. Platelets with changing orientation will show different colors and
those that fail to satisfy the Bragg condition appear dark. The colors observed
during the earlier experiments were primarily blues or violets, hence the name, but
as mentioned the color varies widely across the sample and certainly with changing
temperature. The BP III phase, however, is less visually attractive because of its
blue-gray appearance and was originally referred to as the “blue fog”.

To understand the importance of the blue phases we might note that blue phases
are just one of the intermediate phases found in liquid crystals. Thus to have a clear
and complete understanding of the liquid crystal phase diagram, we cannot simply
ignore these phases. From the theoretical point of view it serves as a great challenge
to the familiar Ginzburg-Landau theory of phase transitions, and as we shall see the
theory passes the test with distinction. Still, because of the elusive nature of these
phases one might also expect to develop sophisticated experimental (and theoretical)
tools to investigate them. Such tools when applied back to liquid crystals might
reveal new unknown features. This is precisely what has happened.

2 Experimental observations

The experimental evidence for blue phase goes back to the nineteenth century
(1888). In fact, the discovery of blue phase by an Austrian botanist named Friedrich
Reinitzer [16] also marked the first sightings of the liquid-crystalline phase itself.
But for nearly a century after its discovery these were only regarded as a metastable
form of the helical phase. The main argument behind the metastability was the fact
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Figure 3: High-resolution heat-capacity
measurements for the blue-phase region
of cholesteryl nonanoate. Source: [19].

Figure 4: Kinematic viscosity measure-
ment of cholesteryl nonanoate. The solid
line is for a concentration ratio that
shows BPs. Source: [18].

that the blue phase can supercool into helical phase by several degrees, which very
often exceeds its entire stability range. Also, within the supercooled range a mere
stirring induces phase transition to the helical phase. However, it was later observed
that near the high temperature end such a transition could not be achieved, thus
providing evidence toward a stable phase. Finally, experiments on several chiral ne-
matics revealed both a change in density and latent heat at the helical–blue phase
transition [1], which was good enough to proclaim blue phase as a separate stable
phase.

2.1 The order of transition in blue phases

The first set of differential scanning calorimetry studies [1] that proved the stability
of the blue phases were able to capture a very small but finite change in density at
the transition point. The latent heat measured was of the order of 0.01 cal/g, which
is only a small fraction of the isotropic–BP transition. These observations indicated
a discontinuous or (weakly) first order transition between the helical and blue phase.
Later, more accurate measurements detected the presence of a second peak in the
heat capacity, thus indicating the presence of the BP II phase. The latent heat for
the BP I–BP II transition was found to be very similar to the helical–BP I value.
The BP III phase was also discovered soon enough, but it exists over a temperature
range of only 0.05K. Nevertheless, BP III showed many optical activities similar to
the other two phases with the exception of any Bragg scattering. All the transitions
between intermediate blue phases were conclusively agreed to be of first order. The
only one which required some debate was the BP III–isotropic transition. But that
has also been resolved to be a weakly first order transition using adiabatic scanning
calorimetry measurements (see Fig. 3). Although the blue phases undergo some
specific heat changes during intermediate transitions, the bulk of it can be seen to
be reserved for the blue to isotropic transition.
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2.2 Important properties of blue phases

Aside from their ability to produce bright colors the blue phases also possess many
other interesting properties. We will be discussing in brief a few of them.

2.2.1 Elastic shear modulus

The blue phases BP I and BP II have periodicity like crystals, thus they are expected
to have some properties to resist shear inspite of them being liquids. Measurements
in a torsional oscillator have actually confirmed this. Although, the magnitude is
roughly a million times smaller than conventional solids at only 103 dynes/cm2 [3].
This value also seems to agree well with the estimates from dimensional arguments.

2.2.2 Viscoelastic properties

The blue phases have also been measured to have anomalously large bulk viscocities
compared to the helical and isotropic phases. Measurements [18] have shown that
chiral nematics that do possess a blue phase undergo a sharp increase (up to 106

times the helical phase value) in viscosity near the helical–blue transition, as the
temperature is raised (see Fig. 4). The value immediately drops as the isotropic
phase is reached. The reason for such high magnitudes can generally be attributed
to the ordered structures of blue phases. The well-known ability of BP I to supercool
is also a result of these viscous properties.

2.2.3 Electric field effects

When blue phases are brought under the influence of external electric field, it gives
rise to field-induced transitions with the appearance of new phases. These new
phases usually have a two or three-dimensional hexagonal structure. But, phases
with tetrahedral symmetry have also been discovered.

2.3 Structure of blue phases

A wide array of experimental (and also theoretical) work has been performed to
determine the structure of the blue phases. In all of the experiments across all
samples tested, a single space group was found to describe BP I and another one
defined BP II. This is quite a surprising achievement considering the very small
energy difference separating the individual phases.

The absence of any birefringence property in the lower temperature blue phases
was enough to suggest that they certainly cannot be anisotropic, and possibly they
have some cubic symmetry. Experimental techniques which included measurements
of selective reflection and rotatory power demonstrated the three-dimensional peri-
odicity of BP I and BP II and their local chiral structures. Their pitches were found
to be of the same order as the pitch of the helical phase. Later, optical Bragg scat-
tering experiments [13] were able to determine the translational symmetry nature of
these phases. Specifically, it was concluded that both BP I and BP II have either a
simple cubic (sc) or a body-centered-cubic (bcc) symmetry. Since these phases are
also chiral the number of possible space groups that they may have are restricted
to six with sc translational symmetry and four with bcc translational symmetry
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Figure 5: Single crystals of BP I showing
well-defined facets. Source: [19].

Figure 6: The orientation of the director
field in a double twist structure. Source:
[19].

[19]. In order to ascertain the correct choice, a substantial number of these phases
in different materials were subjected to very sophisticated experimentations. The
conclusion was that BP I has a bcc O8 structure, while BP II has a sc O2 structure.
These experiments were able to visualize the three-dimensional single crystal struc-
tures of these phases (Fig. 5). Inspite of all these, it should be mentioned that there
is actually no theory which disallows the appearance of other different structures in
other materials that are yet to be tested [19].

Although the structures of the low temperature phases have largely been re-
solved, BP III still remains a mystery. The only feature definitely known is that
this phase is amorphous without any long range symmetry and it also has a locally
chiral structure. But then the large latent heat release at the BP III–isotropic tran-
sition (Fig 3) also indicated that a substantial ordering takes place here. It also
does not help that the experimental evidences for BP III are conflicting. Accord-
ingly, two different structures are being proposed [17], each of which has its own
experimental backers. One of them says this phase consists of the so-called double
twist cylinders, which are a tangle of low-energy cylinders of ordered material. The
other approach has been to apply the quasi-crystal ordering concept to study BP
III. The simplest three-dimensional quasi-crystalline structure turned out to be a
regular icosahedron. There is not yet a consensus on which is the actual model and
so further elaborate experiments are necessary.

3 Theoretical models

Any physical process observed through experiments needs to be validated via the-
oretical models and the blue phases are no exception. Extensive theoretical models
have been developed to explain the various experimental data. Some are in good
agreement, while the rest are not, and surely there remains many open questions.
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The most widely used theoretical device to explain a system undergoing phase transi-
tions is obviously the Ginzburg-Landau theory of phase transitions. Indeed, correct
theoretical description of blue phases remains one of the more glowing achievements
of such theory [9].

3.1 Ginzburg-Landau theory

Ginzburg-Landau theory essentially requires the assumption that the liquid-crystalline
order be a perturbation upon the isotropic state. Then the free-energy density needs
to be expanded in terms of the powers of the order parameter and its spatial deriva-
tives, while neglecting the higher-order terms.

3.1.1 Order parameter

The first step in such a theory is then a proper choice of the order parameter. For
most liquid crystals a scalar or a vector order parameter is inapplicable since liquid
crystals are mostly composed of anisotropic molecules. These systems show orien-
tational order below a critical temperature. Macroscopically, this order evidences
itself as an anisotropy in the system’s second-order tensor properties, which may be
the dielectric or the diamagnetic tensor. A tensor, Q can therefore be an appro-
priate order parameter. This is nothing but the anisotropic part of the dielectric
tensor. And so

Qij ≡ ǫij −
1

3
tr(ǫ)δij 6= 0. (1)

The symmetric traceless quantity Q vanishes in the disordered phase and is non-zero
in any phase possessing orientational order.

3.1.2 Free energy

We have remarked that the transition from isotropic to anisotropic phase is essen-
tially of the first order. This, in fact, permits blue phase ordering to be described
from a simple mean-field theory and thus neglecting any fluctuations. However,
there have also been studies which take fluctuations into account [2]. In such the-
ories by simply considering the spatial periodicity of the anisotropic phase it has
been shown that the net effect of large fluctuations is to disrupt the onset of such
phase from the isotropic phase. In such a situation the free energy of the isotropic
phase has to be lower than other competing structures, if it has to survive. But, if a
new structure with a lower energy appears then a first-order phase transition takes
place from the isotropic to that new phase [4]. Thus, spatial periodicity arguments
together with the fluctuation theory can also predict the existence of intermediate
blue phases.

In what follows, we will totally neglect any fluctuations (following [19]). We
know that to determine the equilibrium structure one clearly needs to minimize the
free energy. We will identify two different sets of terms contained in free energy
density. One set which contains the derivatives of the order parameter is called the
gradient free energy density, and the other set which do not contain such terms is
called the bulk free energy density. Now the main difficulty while minimizing this
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free energy density is that in case of chiral nematics the bulk and the gradient free
energy densities are minimized by different forms of the order parameter. The bulk
free energy is minimized by a uniaxial Q, while the gradient one is done by a biaxial
form. The competition between these two forms of energy is what gives rise to the
“compromise” structures near the transition point which we are calling blue phases.

Up to fourth-order the bulk free-energy density is given by

fbulk = c tr(Q2) + b tr(Q3) + a [tr(Q2)]2. (2)

Here the parameter c can have either sign. But a should be positive from stability
requirements. The cubic coefficient, b determines whether the transition is of first
or second order. When b is nonzero, the order parameter shows a jump to a nonzero
value and then c is positive. This is what we know to occur in ordinary nematics
where ordering is driven entirely by bulk free energy and where the coefficient b
makes the transition first order. Now, for a non-vanishing b, the bulk free energy
density is minimized at any point by a uniaxial tensor. Mathematically, this means
the matrix Q has a pair of degenerate eigenvalues. Thus both n and −n, which
are directions orthogonal to the director, are identical and hence this configuration
is called the uniaxial helix. The anisotropy of the ordered liquid has a rod-like
symmetry in this case.

The gradient free-energy density on the other hand has the form

fgrad = K1[(∇× Q)ij +
4π

p0

Qij ]
2 + K0[(∇ ·Q)i]

2, (3)

where the curl term appears only in chiral nematics, p0 is the pitch of the helical
phase and K1, K0 are two elastic constants. When the elastic constants are both
positive, the gradient free energy is surely positive. It reaches its minimum for any
Q under the following condition

∇× Q = −
4π

p0

Q. (4)

fgrad is minimized by a structure of the order parameter, which like the uniaxial
helix is constant in directions normal to the director and also rotates uniformly
along the director axis. Locally, however, this structure is totally different. In
this case there are three distinct eigenvalues and the geometry is different along all
three directions. This anisotropy has a brick-like symmetry. Note that this clearly
relates to the platelets, we mentioned while discussing the blue phase structure.
This configuration is called the biaxial helix. Biaxiality is important in understand-
ing the blue phase ordering, especially at the high-chirality limit to be discussed
subsequently. One thing that we would like to point out here is that the overall
symmetry of the ordered phase may or may not reflect the individual symmetry of
the constituent molecules, and molecules with brick-like symmetry can in fact form
a uniaxial liquid.

The full free-energy density is then

f = fbulk + fgrad, (5)

where fbulk and fgrad are respectively given by (2) and (3). The minimization of
the full free energy is still an open problem, since its two components favor separate



3 Theoretical models 10

Figure 7: The arrangement of double-
twist cylinders in the O2 structure.
Source: [19].

Figure 8: The arrangement of double-
twist cylinders in the O8 structure.
Source: [19].

minimization structures.

3.2 Two limiting cases

In what follows in this section, we will be studying two of the limiting cases of
Ginzburg-Landau theory, which makes it possible to extract many of the experi-
mentally observed blue-phase structures.

3.2.1 Low chirality limit

Denoting chirality by κ, this is the case when κ → 0, which happens when the
pitch, p0 → ∞. In this situation fbulk dominates. This is easily seen as follows. For
infinite pitch the second term in (3) vanishes and also the right hand of (4). Thus
any constant tensor Q minimizes fgrad, and a uniaxial Q certainly does that which
also, as we have seen, minimizes fbulk. The gradient free energy in this case becomes
zero. Note that in the low-chirality limit (κ = 0) there is actually no blue phase
and the structure is, as expected, uniaxial. The low-chirality model [14] will assume
chirality to be low enough so that the order parameter is only weakly biaxial, but
which nevertheless causes new phases to appear.

Low-chirality limit is important since typical values of κ found in many systems
actually conform to this limit. As pointed out, this model assumes the free-energy
density to be uniaxial, even though the chirality is not actually zero, but then a
relaxation to biaxiality is expected to result in only small corrections. The main task
here is to determine what kind of uniaxial structure may have a lower free energy
than the helical phase, so that it may exist beyond the transition temperature. It
turns out [14] that the double-twist structure of the director (see Fig. 6) indeed
does that. The structure is so-called since the director rotates simultaneously along
two directions orthogonal to each other. This assumption is, however, not without
trouble. It is not possible to built structures which are locally double twist that
extend across an entire region of space. Thus, quite evidently, regions of double
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twist will be separated by less favorably aligned structures. Then a structure with
locally double twist configuration can only be stable if the free-energy gain in the
double twist zones more than offset the loss outside those zones. One way to do this
is by varying the amplitude (denoted here by λ) of the order parameter. Reducing
the amplitude in those non-double twist regions lowers the gradient free energy,
which is good, but its effect on bulk free energy is undesirable, since fbulk does not
prefer variations in amplitude. Since, in the low chirality limit it is the bulk free
energy which dominates, such variations are possible only up to a certain threshold.
Below which no blue phases may appear.

Construction of stable structures then calls for a slight alteration of the perfect
double twist structure. Instead of a double twist structure which varies constantly in
amplitude we consider an imperfect double twist structure, which has some constant
amplitude until some radius, and is zero beyond. This is because a double twist
structure is always preferable near the director axis and up to a certain radius, but
in addition, for the above configuration to be stable the isotropic phase (the zero
amplitude domain) needs to be of lower energy than the helical phase. This has
been proved to be true over a certain range of κ [7]. The resulting stable structure
then consists of double twist cylinders floating in a sea of isotropic phase. When
the cylinders are not arranged in a periodic fashion we get the double twist model
of amorphous BP III, mentioned earlier. The periodic arrangements result in the
tight-binding blue phase models for BP I and BP II.

When the double twist cylinders are arranged in a periodic array with simple
cubic translational symmetry we get the O2 space group which describes the BP II
phase, as shown in Fig. 7. This arrangement, although it fills out at least 3π/16
(58.9%) of the space with zones that has a lower free energy than the helical phase,
introduces singularity in between two such zones. These are the π-dislocations
and are found in all such structures built using double twist cylinders. There is a
singularity since the gradient free energy diverges at the core of such dislocations.
The compromise is then to vary λ in such a way that it vanishes at the dislocation
cores and thus results in a non-singular core of isotropic liquid. Similarly one may
also get O8 space group corresponding to BP I, by arranging the cylinders into a
body centered cubic array fashion (Fig. 8).

3.2.2 High chirality limit

For short pitch, the stability analysis for the helical phase predicts that the helical
ordering disappears through a second-order transition to the isotropic phase. But,
that is never observed in practice, where the second order transition is replaced by
a series of first order transitions that result in the intermediate blue phases. For
very low pitch or when the chirality is very high the gradient free energy dominates.
As mentioned earlier this energy is minimized by a biaxial helix order parameter
or a linear combinations of the same. In the κ → ∞ limit, the helical phase order
parameter becomes a single biaxial helix. The blue phases are then a linear com-
bination of biaxial helices differing from each other by translation and/or rotation.
It turns out (see for example [8]) that such a phase with a cubic fbulk has lower
free energy compared to both the helical and isotropic phases at sufficiently low
temperature. As the temperature drops further the order parameter grows and the
quartic terms in the bulk free energy become more dominant. Then it can be shown
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Figure 9: The wave vectors of the icosa-
hedral model. Source: [19].

Figure 10: A theoretical phase diagram.
Source: [17].

that the helical phase becomes more favorable. In this manner the high chirality
limit identifies the existence of blue phases.

To determine which space groups are dominant in this limit one can carry out
a detailed minimization procedure of the free energy terms [19]. It shows the space
group O5 to be the most favorable high-temperature form for blue phases in this
high-chirality limit. This is the ordered state (BP II) where the isotropic liquid first
condenses into. When the temperature is further dropped a O8 structure (for BP
I) appears with a lower free energy. But, this structure turns out to be unstable
in this limit. Instead, a structure with hexagonal symmetry seems to be stable all
along the region where the O8 structure is favored over O5. It is interesting to note
that the O8 space group, although unstable here, is predicted by both the high and
low chirality limit analysis. On the other hand, the O5 structure has never been
observed experimentally. When κ is not infinity, but still moderately high, there
seems to be a possibility for the O2 structure to also appear, which then becomes
more stable than the helical phase. So there is a possibility that this structure
might also fit inside the chirality-temperature phase diagram along with the other
structures described.

As for BP III, the only structure suggested in this limit has the translational
symmetry of an icosahedral quasicrystal as shown in Fig. 9. The argument put
forward here is that the 30 wave vectors directed along the 15 twofold axes of an
icosahedron should contain quite a few many trios that sum to zero, which would
let the cubic bulk free energy compete more favorably with the bcc phases. Actual
calculations, however, show otherwise [19]. There have been many attempts to
tweak the above structure so that it becomes more favorable energetically, but this
problem is still far from being resolved.

4 Phase diagram

Assembling all the aspects of the blue phases discussed, we are now in a position to
construct the temperature-chirality phase diagram. The theoretical phase diagram
shown in Fig. 10 clearly shows the various space groups and this can be compared
with the experimental data of Fig. 11. Note that these comparisons are done only
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Figure 11: Phase diagram obtained via
experiments on CE5. Source: [19].

Figure 12: A schematic phase diagram
showing the location of the isotropic–BP
III critical point (P). Source: [12].

on a qualitative basis. As noted in the previous sections O8 and O2 structures are
clearly identified with BP I and BP II respectively. At the high chirality limit, the
theory in addition predicts the O5 structure over a narrow region. This kind of
phase diagram has been recently augmented with the discovery of a critical point
[10] in between the BP III and the isotropic phase. This phenomenon has only been
observed in highly chiral liquid crystals. Clearly, it suggests a liquid–gaslike criti-
cal point in the temperature-chirality plane [12] of liquid crystals. There probably
exists a one-to-one correspondence between the BP III–isotropic and the liquid–gas
transitions. Also, it implies that the isotropic and BP III phases have the same
isotropic symmetry, contrary to the predicted icosahedral and double twist struc-
tures, discussed before. A simple phenomenological model has been constructed
supporting this argument using a pseudoscalar order parameter, (∇ × Q) · Q [12].
A schematic of the currently accepted phase diagram is shown in Fig. 12. It is then
also of interest to investigate the other blue phases using this new order parameter
to see if the O5 space group gets eliminated.

5 Concluding remarks

Liquid crystals belong to that class of physical systems which are interesting both
from the point of view of their underlying physics and also from their industrial
applications. The worldwide liquid-crystal-display industry will surely testify to
that. And, blue phases remain one of the most exotic phases of such matter. In
this essay we have mainly tried to demonstrate how the simple Landau theory is
able to explain most of the anomalies that appear for these phases. Also, from
the knowledge of space-group symmetries most of the features of BP structures
have been identified. But, these approaches have their own problems. A complete
understanding of the BP structures require knowledge of the spatial molecular dis-
tribution function. Simple space-group studies cannot lead to that. Neither can a
mean-field theory, which neglects fluctuations, accurately compute the latent heat
ratios in a typical order-disorder transition. Thus, the phase diagrams we compared
were also largely qualitative. The issue of the O5 structure remains, since it has
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never been observed experimentally. The mystery of BP III also needs to be resolved
sooner than later. One extension that is clearly possible is to extend the Landau
theory to include higher-order terms in the free-energy expansion. Such procedures
might enable closer comparisons with experimental data. On the other hand, the
experimental field that is expected to show the most promise in the near future is
that of NMR spectroscopy [9]. Interestingly, the methods developed to analyze the
blue phases were good enough to discover other new phases of liquid crystals, such
as the smectic blue phase and the twisted grain boundary phase, mentioned before.
And the current crop of research in this field seems to be more focused on these new
phases, instead of solving some of the more traditional puzzles.
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