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Introduction 
 
Polymers are long-chain molecules, created by the large number of repetitions of basic 
units called monomers. The monomers are typically connected via strong covalent bonds 
to produce long-chain molecules, which in turn interact with each other mostly via 
weaker Van der Waal forces (at least for non-cross link polymers). While chemists spend 
much of their time synthesizing polymers and characterizing their chemical or physical 
properties, physicists are more interested in the universal properties which emerge out of 
the ‘bare-bone’ fact that a polymer is simply a long linear molecule and how the 
properties are affected by ‘large scale quantities’ such as the quality of the solvent in 
which the polymer is immersed, the temperature, the presence of surface and e.t.c [1]. In 
addition, we note that in a polymer chain, we can assume that the bond directions are no 
longer correlated beyond a certain persistent length, lp. 
 
With the above in mind, the simplest reasonable model of a polymer is that of a random 
walk [2] on a lattice, with each lattice site representing a chain of monomers of length lp. 
In this scheme, considering a d-dimensional cube, a random walker currently at site i has 
equal probability, 1/2d, of going to each of its nearest neighbor.  The number of distinct 
paths, CN, after N steps is thus given as 
 

CN  = (2d)N                  (1) 
 
This allows us to calculate the entropy SN of this one-polymer system is thus given by 
 
 SN = kB ln(CN) = kBN ln(2d)                          (2)      
 
Another property, the end-to-end distance of the chain length, RN, which is a measure of 
the spread of the polymer can also be obtained easily. Suppose that RN is the end-to-end 
vector of a given walk, it can be written as the sum of the (unit) vectors ui which forms 
the walk 
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The Kronecker Delta terms are obtained due to the fact that in a random walk, different 
steps are uncorrelated, giving rise to < ui uj > = 0 if i≠j. Although the random walk model 
may seem crude and does not take into account important factors such as the excluded 
volume of the monomer, this model can be solved exactly and the results give us an 
intuition of what to expect in more accurate models, such as the self-avoiding walks 
model (SAWs). 
 
 
 
Self-Avoiding Walks    
 
SAWs takes into account of the fact that each monomer has an associated volume (the 
excluded volume) which may not be occupied by another monomer. Polymers are almost 
always immersed in a solvent [3]. In a good solvent, it is energetically favorable for a 
monomer to be surrounded by solvent molecules and hence, the probability of finding 
another monomer within a certain associated volume is very small. The idea of self 
avoidance can easily be incorporated in the random walk model discussed in the previous 
section. Considering a d-dimensional cubic lattice, each lattice site is the excluded 
volume. The walker at site i no longer have an equal chance of moving to each of the 2d 
(nearest neighbor) directions. If the walker steps into an occupied site, the step has to be 
rejected. This simple additional constraint generates a sufficiently difficult mathematical 
problem that few exact results are available [4]. The trajectories of a random walk 
(30,000 steps) and a SAW (2,500 steps) are shown in figure 1. As expected, the SAW 
results in a larger spread. Exact results for SAW have also been sought, albeit essentially 
at small and large values of N. The asymptotic values (at large N) for CN and RN are 
shown in (5) and (6) respectively. The reader is referred to [1] for more detailed 
discussion. 
 
 

CN  ~ µN Nγ-1                 (5) 
 
 
 RN ~ Nν                (6) 
 
Here both γ and ν are critical exponents which depends on dimensionality while µ is 
often called the connective coefficient. As can be seen, the random walk is a special case 
of these asymptotics with µ, γ and ν being 2d (twice the number of nearest neighbors), 1 
and ½ respectively.  
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Figure 1: (Left) A random walk of 30,000 steps. (Right) An SAW of 2,500 steps [1]. 
 
 
 
Connection with Critical Phenomena 
 
The existence of the critical exponents in (5) and (6) is derived from the fact that the 
SAW is equivalent to the magnetic O(n) model with n → 0. This relation, due to P.G. de 
Gennes [5-7] allows the application of all techniques from the theory of critical 
phenomena to polymer models. A brief outline is shown here (based on [1]) and the 
reader is referred to [1,4] for a more detailed explanation. The relation involves the high 
temperature expansion of the Ising model [8] and it starts off from the familiar partition 
function of the Ising model 
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where <i, j> denotes nearest neighbor sites on a lattice and K is the reduced coupling 
constant, and the spin s, can take on either a value of 1 or -1. And if the lattice contains 
NB edges  
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By dropping the trivial cosh K factor and introducing v = tanh K, we can define the 
partition function of the O(n) model as 
 
 

,

(1 )
n i j

i j

Z Tr v
< >

= +! s s                 (9) 

 
where s is a n-dimensional spin vector with fixed length of n1/2, i.e s • s = n. In addition, 
the following regarding the spin components hold 
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where sα, sβ are components of the spin vectors. The correlation function is considered 
next 
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The terms are then expanded in terms of v. And each term of the expansion is evaluated 
in the limit n → 0 by applying the result for the trace in (10).  It can be verified that only 
products graphically represented by a self avoiding path of bonds from k to l have non 
zero contribution to the correlation function.  We then obtain the result 
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The grand partition function for SAWs  can be obtained by summing over l. The resulting 
quantity is the susceptibility χ0 of the O(n) model. 
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The last term in (13) is the grand partition of the SAW, thus showing the equivalence 
between the susceptibility of the O(n=0) model and the grand partition function of SAW. 
 
 
 
Phase Transitions near Surfaces 
 
As discussed previously, polymers modeled with SAW exhibits critical phenomena 
which correspond to the O(n=0) system. The problem can be made more interesting if an 
impenetrable surface is added to the system, which gives rise to more critical phenomena. 
In addition, it allows us to model adhesion of polymers on surfaces which has always 
been an area of interest: polymers at surfaces may have important applications as glues or 
lubricants, plus the fact that solvent quality is often an issue (e.g. when the original 
solvent has evaporated, the polymer is now exposed to air, which is a bad solvent).  
 
The surface adhesion problem is modeled by considering SAW on a semi-infinite lattice, 
bounded by a surface of d-1 dimension. Figure 2 shows a schematic of an SAW attached 
to a surface, which is often assumed to be attractive. As such an energy contribution of εs 
(< 0) is made for each step on the surface. This leads to an increased probability 
characterized by the Boltzmann factor ω = exp (- βεs) where β = 1/(kBT). In a good 
solvent, monomer-monomer interaction can be considered as repulsive and hence, need 
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not be modeled. At low temperatures, the polymer will be adsorbed to the surface, while 
at high temperature it desorbs and stays as a bulk phase. It is thus clear that there exists a 
phase transition between a high temperature phase described by a d-dimension SAW 
behavior and a low temperature phase exhibiting a (d-1)-dimension behavior. This system 
has been widely studied [4] and a phase diagram (obtained from [9]) is shown in figure 3, 
which is obtained from Monte Carlo simulations on a simple cubic lattice. The 
parameters p and q are the fugacity (which is assumed to be temperature independent) 
and the Boltzmann factor arising from an attractive surface (q ≡ ω). The ensemble which 
the simulation is performed on is defined by the following partition function 
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where CN, m  denotes the number of configurations with N self avoiding steps, having m 
sites on the surface. The notation 1 indicates that one end of the chain is attached to the 
surface. Figure 3 shows 3 different phases. The upper part is the bulk phase where the 
single polymer chain fills the bulk volume with finite density. The lower right part is the 
surface phase containing a long adsorbed polymer and the lower left phase is the sub- 
critical phase composed of short chains. For small p and q, long chains are suppressed 
and the ensemble is largely composed of short chains. At small p, a phase transition 
(termed the surface transition) is observed when q is increased to a point qo(p), where the 
polymer chain adsorbs onto the surface with diverging average chain length. Likewise, 
desorbed short chains can grow indefinitely when p goes beyond pc. It is noted that pc is 
independent of q. This is because pc is just the critical value of p for SAWs in the bulk 
(i.e. without considering the effect of surface) and the value of pc is simply 1/µ. The 
tricritical point S=(pc, qc) is where the 2 curves q = qo(p) and p = pc meets. The line to its 
left corresponds to the ordinary transition (where the polymer length simply diverges 
without any adsorption involved). The line to right of S denotes the extraordinary 
transition (polymer length is kept infinite, polymers simply desorbs). 
 
 

 
 

 
Figure 2: A SAW attached to a surface [1]. 
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Figure 3: The phase diagram of a polymer in good solvent modeled with SAW with one 
end attached to an impenetrable surface [9]. 
 
 
 
Self Attracting SAW 
 
The situation described above is however different for the case of a polymer chain 
immersed in a poor solvent. In this case, on top of the energy related to surface 
adsorption, εs, one needs to introduce εp (< 0) which is the monomer-monomer (nearest 
neighbor) interaction. Again, we define a Boltzmann factor related to this interaction: u = 
exp (- βεp). The self attracting SAW was performed in [10] on a semi-infinite square 
lattice and the obtained phase diagram is shown in figure 4. The results are obtained via 
direct enumeration of walks with N < 29. 
 
As observed in figure 4, there are 4 different phases. For better comparison to figure 3, it 
is noted that a low value of ω or u corresponds to a high temperature state (given that the 
interactions εs and εp are fixed).  The DE (desorbed expanded) state occurs at small values 
of ω and u and it corresponds to the bulk state (see figure 3) described in the previous 
section. And keeping the value of  ω low and increasing u, a phase transition to the DC 
(desorbed collapsed) states occurs at uc. This state is not present in a good solvent and is 
a result of the attractive interaction of the monomers in a poor solvent. In the DC state, 
the polymer exists as a compact globule of finite density. The radius of gyration RN 
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varies with N1/d in d-dimension instead of Nν (6) in the bulk (or DE) case. Keeping u 
constant (u < uc) and increasing ω (decreasing temperature), we obtain the familiar 
extraordinary transition (see figure 3) at ω  = ωc. The AE (adsorbed expanded) phase is 
equivalent to the adsorbed phase in figure 3. This transition occurs at a small value of u, 
i.e the monomer-monomer interaction is small. From the AE phase, one can expect a 
phase transition to the SAG (surface-adsorbed globule) phase when u is large, i.e a 
compact globule with small surface wetting area is preferred. The size of the polymer in 
the directions transverse and perpendicular to the surface varies as N1/d in the SAG phase 
as opposed to the usual relation in (6) for the AE case [11]. Note that νAE takes on the 
self-avoiding walk exponent in d-1 dimension.  
 
 
 

 
 
Figure 4: The phase diagram of a surface interacting linear polymer in 2-d space using 
self attracting SAW [10]. 
 
 
 
Conclusion 
 
In this paper, we have discussed how polymers can be modeled by self avoiding walks 
(SAWs) on a lattice. In particular, a parallel can be drawn between a SAW and the O(n) 
model of magnetic systems with n → 0. This allows us to import the techniques and ideas 
from the critical phenomena into the SAW model. The model has been used to study 
polymer systems under various conditions and situations such as its interaction with a 
surface. The existence of an attractive surface results in addition critical phenomena. The 
problem of surface adhesion under different solvent conditions can also be explored with 
this model. In a good solvent, the monomer-monomer interaction is repulsive and can be 
neglected. Whereas in a bad solvent, this interaction is attractive and it competes with the 
surface attraction when the polymer chain is close to the surface. The phase diagrams 
obtained under these 2 conditions has been compared and contrasted in this paper. 
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