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Abstract. Experimental control over inter-atomic interactions by adjusting external pa-
rameters is discussed. Qualitatively different time evolution of the order parameter are
predicted theoretically in ultracold atomic fermions with time-dependent pairing interac-
tion. Following an abrupt change of the pairing strength, the order parameter undergoes
undamped oscillation, damping oscillation and exponential decay in different dynamical
regimes respectively.
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1 Introduction

Ultracold atomic gases have become an important medium to realize novel phenomena
in condensed matter physics and test many-body theories in new regimes. Of particular
interest are pairing phenomena in fermionic gases, which have direct analogies to super-
conductivity.

The dynamics of the superconducting BCS state in metals has been a subject of
long-time active interest. However, until recently, several remarkable experiments, made
possible due to the precise experimental control over interactions between atoms in
trapped cold gases, have demonstrated Cooper pairing in cold atomic Fermi vapor.[1]
Characteristics of a paired state — condensation of Cooper pairs and the pairing gap have
been observed. In addition, trapped gases provided a unique tool to explore aspects of
fermion pairing normally inaccessible in superconductors. This new discovery has re-
newed interest in quantum collective phenomena. One of the most exciting prospects is a
study of far from equilibrium coherent dynamics of fermionic condensates, which can be
initiated by quickly changing the pairing strength with external magnetic field.

Theoretically, response of fermionic condensates to fast perturbations is a long-
standing problem. The main difficulty is to describe the time evolution in the nonadi-
abatic regime when a nonequilibrium state of the condensate is created on a time scale
shorter than the quasi-particle energy relaxation time. In this case the evolution of the sys-
tem cannot be described in terms of a quasiparticle spectrum or a single time-dependent
order parameter ∆(t). One has to account for the dynamics of individual Cooper pairs,
making it a complicated many-body problem.

In the work of Barankov et al[2][3], the authors investigated this problem by using
a combination of numerical and analytical methods to solve the Bloch equation of pseu-
dospins. In the work of Yuzbashyan et al[4][5], this problem is treated and generalized
based on the integrability of the BCS Hamiltonian in this case. In this term essay, I pri-
marily followed the work of the previous group.

Experimentally, the nonadiabatic regime can be accessed in ultracold Fermi gases,
where the strength of pairing between fermions can be rapidly changed. Nonadiabatic
measurements can also be performed in quantum circuits utilizing nanoscale supercon-
ductors where the dynamics can be initiated by fast voltage pulses. This opens up the
possibility of exploring the interesting behavior of the pairing dynamics following an
abrupt change of the coupling strength.
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2 Experimental control over atomic interaction

Dilute fermionic alkali gases cooled below degeneracy temperature are expected to host
the paired BCS state. Recent experiments[1] on cold fermion pairing realized the control
of interaction strength by using magnetically tuned Feshbach resonances which provides
access to the strong coupling BCS regime.

The strength of atomic interactions is characterized by the scattering length a. Scat-
tering lengths for alkali atoms are of the order of 100a0, where a0 is the Bohr radius.
In a scattering process, the internal states of the particles in the initial or final states are
described by a set of quantum numbers, such as those for the spin, the atomic species,
and their state of excitation. One possible choice of these quantum numbers is referred as
a channel. Coupling between channels gives rise to the so-called Feshbach resonances,
in which a low-energy bound state in one channel strongly modifies scattering in another
channel.[8] Feshbach resonances make possible to tune the magnitude of the effective
atom-atom interaction, characterized by the s-wave scattering length a, as well as whether
they are, in the mean-field approximation, effectively repulsive(a > 0) or attractive(a < 0),
they have become a powerful tool for investigating cold atoms.

Feshbach resonances appear when the total energy in an open channel matches the
energy of a bound state in a closed channel. From perturbation theory one would expect
there to be a contribution to the scattering length having the form of a sum of terms of the
type

a∼ C
E−Eres

(1)

where E is the energy of the particles in the open channel and Eres is the energy of a state
in the closed channels. Consequently there will be large effects if the energy of the two
particles in the entrance channel is close to the energy of a bound state in a closed chan-
nel. From second-order perturbation theory for energy shifts, coupling between channels
causes a repulsive interaction if the energy of the scattering particles is greater than that of
the bound state, and an attractive one if it is less. The closer the energy of the bound state
is to the energy of the incoming particles in the open channels, the larger the effect on the
scattering. Since the energies of states depend on external parameters, these resonances
make it possible to tune the effective interaction between atoms.

For example, consider an external magnetic field by including Zeeman terms in
Hamiltonian.[7] If the Feshbach resonance occurs for a particular value of the magnetic
field B0, the scattering length is given by

a = anr

(
1+

∆B
B−B0

)
(2)
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where anr is the non-resonant scattering length whose energy dependence may be ne-
glected, and the width parameter ∆B is proportional to the square of the matrix element
of the coupling part of the Hamiltonian. Eq.(2) shows that because of the dependence
on 1/(B−B0), large changes in the scattering length can be produced by small changes
in the magnetic field. It is especially significant that the sign of the interaction can be
changed by a small change in the field.

One of the most important applications of this technique is to experimentally probe
what is known as the BCS-BEC crossover, as the strength of the effective attractive in-
teraction between particles is increased continuously from condensation of delocalized
Cooper pairs to condensation of tightly bound bosonic molecules. In the work cited in
reference, however, the authors are mostly interested in the BCS pairing dynamics ini-
tiated by a sudden change to the coupling strength on the BCS side of the Feshbach
resonance. BCS-BEC crossover will not be considered in this term essay.

3 To pose the problem...

Write down the Hamiltonian of BCS model,

HBCS = ∑
j,σ

ε jc
†
j,σ c j,σ −g∑

j,k
c†

j↑c
†
− j↓c−k↓ck↑ (3)

Initially, the gas is in the BCS ground state at zero temperature with a coupling con-
stant g = gi > 0. At t = 0+ the coupling constant is suddenly changed to another value
g = g f > 0: gi → g f . Ground state of the system at the old and new values of the coupling
are characterized by corresponding BCS gaps, ∆i and ∆ f , respectively.

Immediately after the coupling constant is abruptly changed, the initial state is no
longer the BCS ground state for the system, what we are interested in is the time evo-
lution of order parameter ∆(t) of the fermionic condensate in response to such a sudden
change of interaction strength, on a time scale τ∆ = 1/∆i. This time-dependent behav-
ior depends critically on the strength of the perturbation, namely, the relative magnitude
between the old and new coupling constants, or BCS gaps ∆ f /∆i. Before discussing this
time-dependent behavior of order parameter, we shall first introduce the method to be
used.

3.1 Pseudospin Representation

The most convenient way to derive the BCS mean field dynamics is based on Ander-
son’s pseudospin representation. Make the following identification between fermionic
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states(empty or occupied) and pseudospin states(up or down)

|1 j↑1− j↓〉= | ↑〉, |0 j↑0− j↓〉= | ↓〉 (4)

and define the pseudospin operators

sz
j =

(
n j↑+n− j↓−1

)
/2, s−j = c− j↓c j↑, s+

j = c†
j↑c

†
− j↓ (5)

It can be proved easily that these operator indeed satisfy the commutation relations of the
Lie algebra of SU(2). Up to an additional constant, the BCS Hamiltonian can then be
written in terms of these pseudospin operators

HBCS = ∑
j

2ε jsz
j−g∑

j,k
s+

j s−k (6)

The BCS order parameter is the expectation value of the ladder operator: ∆(t) =
g〈∑k s−k 〉= ∆x− i∆y. In mean field approximation, each spin evolves in the self-consistent
field

HBCS = ∑
j

2ε jsz
j−2∑

j

(
∆xsx

j +∆ysy
j

)
=−∑

j
h j · s j (7)

where h j = (2∆x,2∆y,−2ε j). This is done by writing the each spin variable as the sum
of its mean value and fluctuations, expand the products and neglect the fluctuation terms.
The time evolution of expectation values of these spin operators is governed by the equa-
tion

d
dt
〈Ô〉= i

〈
[Ĥ, Ô]

〉 ⇒ ṡ j = s j×h j (8)

After taking expectation values, the spin variables in equation (8) are replaced by classi-
cal spins. The above equation is usually called Bloch equation. The ground state of the
Hamiltonian (7) corresponds to the configuration that each spin is parallel to its own local
magnetic field. Without loss of generality, we can appropriately choose the x-axis so that
the order parameter is real: ∆i = ∆x, thus sy

j(t = 0) = 0.

3.2 Initial value problem

Now we have a well-defined problem as follows
d
dt

s j = s j×h j, with h j = (2∆x,2∆y,−2ε j), for t > 0 (9)

where the effective magnetic field depends on the pairing amplitude ∆, which is defined
self-consistently with new coupling g f :

∆ = ∆x− i∆y = g f ∑
k

s−k = g f ∑
k

(
sx

k− isy
k

)
(10)

The initial condition is the ground state with old coupling gi:

sx
j(t = 0) =

∆i

2
√

ε2
j +∆2

i

, sz
j(t = 0) =− ε j

2
√

ε2
j +∆2

i

(11)

This is a set of coupled nonlinear ordinary differential equations.
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3.3 Method to be used

Two primary kinds of methods are used to analyze the problem posed in the previous sec-
tion.
(1) Numerical method[2]: The Runge-Kutta method of the 4th order was used to in-
tegrate the differential equations with initial conditions (9)-(11). The advantage of the
purely numerical method is completeness, by which a uniform treatment to different cases
is allowed. On the other hand, qualitative physics picture is obscured by the numerics.
(2) Analytical method[4][5][6][2][3]: By using linear analysis or asymptotic analysis in
some extreme cases, approximate solution can be obtained respectively. Qualitative but
rigorous information can be obtained to determine the dynamics of the system.

4 Classification of dynamical transitions

Three qualitatively different dynamical regimes are observed.

4.1 ∆i < e−π/2∆ f : undamped oscillation

If the initial state at t = 0− has a relatively small BCS gap ∆i compared to the new gap
∆ f such that ∆i/∆ f < e−π/2 ≈ 0.21, the time evolution of the order parameter ∆(t) is an
undamped oscillation between a lower limit ∆− and an upper limit ∆+.

The above plot of the time evolution of the order parameter is obtained by us-
ing Runge-Kutta method of the 4th order.[2] The order parameter is in the unit of
∆ f , and the time is in the unit of 1/∆ f . The order parameter in the initial state is
∆i = 0.05∆ f < 0.21∆ f , and then it oscillates between ∆+ ≈ 0.97∆ f and ∆− ≈ 0.31∆ f .

This kind of undamped periodic oscillation is called multi-soliton solution, and can
be understood analytically in the following way[3]. Write the differential equation (9) for
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each spin in the following form

ṡ+
j = 2iε js+ +2i∆∗sz

j, ṡ−j =−2iε js−−2i∆sz
j, ṡz

j = i(∆s+
j −∆∗s−j ) (12)

Assume the time evolution of the order parameter of the form ∆(t) = e−iωtΩ(t), with Ω(t)
real, also s±→ s±e±iωt , eliminate the common phase factor e±iωt , the above equation is
transformed into the following form(written in cartesian components)

ṡx
j =−ξ js

y
j, ṡ−j = ξ jsx

j +2Ωsz
j, ṡz

j =−2Ωsy
j (13)

where ξ j = 2ε j−ω . The above set of equations can be solved by the ansatz

sx
j = C jξ jΩ, sy

j =−C jΩ̇, sz
j = C jΩ2−D j (14)

Then, the first and the third of Eq.(13) is satisfied identically. The second of Eq.(13) is
consistent with the normalization condition

(sx
j)

2 +(sy
j)

2 +(sz
j)

2 = 1/4 ⇒ 2sx
j ṡ

x
j +2sy

j ṡ
y
j +2sz

j ṡ
z
j = 0 (15)

which can be verified by direct substitution. Thus the normalization condition takes fol-
lowing form

C2
j ξ 2

j Ω2 +C2
j Ω̇

2 +(C jΩ2−D j)2 = 1/4 (16)

The above equation can be cast into the following form for all the spins

Ω̇2 +(Ω2−∆2
−)(Ω2−∆2

+) = 0, ∆− < ∆+ (17)

if the constants D j and C j are appropriately chosen as (D2
j − 1/4)/C2

j = ∆2
+∆2− and

2D j/C j = ξ 2
j +∆2

+ +∆2−. Now, Eq.(17) is a typical differential equation which defines an
elliptic integral

t =
∫ dΩ√

(∆2
+−Ω2)(Ω2−∆2−)

(18)

the solution Ω(t) is an elliptic function oscillating periodically but non-harmonically be-
tween ∆− and ∆+. Physically speaking, this is caused by synchronization of different
Cooper pair states resulting from their interaction with the mode singled out by BCS in-
stability of the initial state.

4.2 e−π/2∆ f ≤ ∆i < eπ/2∆ f : damping oscillation

Desynchronization occurs when the new BCS gap ∆ f at t = 0+ is small enough such that
∆i > 0.21∆ f . In this regime, two cases are possible, underdamped and overdamped. The
former case, in which the time evolution of the order parameter is still an oscillation but
with damping amplitude, converging to a constant value ∆∞, will be considered in the
current subsection, which occurs when 0.21∆ f < ∆i < e+π/2∆ f = 4.81∆ f .
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The plot on the right of the time evolution of the
order parameter is obtained by using Runge-Kutta
method of the 4th order.[2] The order parameter is in
the unit of ∆ f , and the time is in the unit of 1/∆ f .
The order parameter in the initial state is ∆i = 0.21∆ f
for the upper curve and 4.5∆ f for the lower curve.
with the asymptotic values ∆∞ ≈ 0.81∆ f , 0.12∆ f
respectively.

The simplest way to understand this damping oscillation is to consider a small de-
viation from the initial state, i.e. δ∆ = ∆ f −∆i is small compared to ∆ f . Here, the linear
analysis is used. Write

∆(t) = ∆i +∆′, s j = s j(t = 0)+ s′j (19)

where the primed variables are assumed to be first-order small quantity. And the initial
configuration is the ground state with BCS gap ∆i which is represented by Eq.(11). Lin-
earize the Bloch equation (9) about the initial equilibrium state, and keep the terms up to
the first order, we have the following set of coupled linear equations (note: the original
set of equations is coupled and nonlinear)

d
dt




s′x
s′y
s′z


 =




0 −2ε −2∆y
i

2ε 0 2∆x
i

2∆y
i −2∆x

i 0







s′x
s′y
s′z


+




−2∆′ysz0
2∆′xsz0

2∆′ysx0−2∆′xsy0


 (20)

Here we have suppressed the index j for individual spin. First of all, we can solve the
eigenvalue equation for the coefficient matrix to get the oscillating frequency for each
spin, denoted by

ω(ε) =±2
√

ε2 + |∆i|2 (21)

Calculation can be simplified by assuming the initial condition according to Eq.(11), i.e.
sy

j(t = 0) = 0, and ∆i = ∆x. Up to the first order of δ∆/∆ f , we have

∆(t) = ∆ f −8δ∆
∫ ∞

0
dε

cos(ωt)
ω[π2 +h2(ε)]

(22)

→ ∆ f − 2δ∆
π3/2

√
∆ f t

cos
(

2∆ f t +
π
4

)
as t → ∞ (23)

where h(ε) = sinh−1(ε/∆ f ). The asymptotic expression for the integral at long time is
obtained by using stationary phase method. The above power-law decay of the order
parameter can be generalized to nonlinear case[5]

∆(t)
∆∞

= 1+ const× cos(2∆∞t +φ)√
∆∞t

(24)
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where the constant coefficient is time-independent, and ∆∞ = ∆ f if |∆ f −∆i| is small.

According to Eq.(9), at long times, each spin s j precesses in its own constant field
h j = (−2∆∞,0,2ε j) with its own frequency ω(ε j). For example, for the x-component of
spin derived from the linearized equations of motion[4]

sx(ε) =
∆ f

2
√

ε2 +∆2
f

− δ∆ · ε
(ε2 +∆2

f )
√

π2 +h2(ε)
× cos[ω(ε)t +φ(ε)] (25)

There is no damping in the precession of individual spin, however, the gap ∆(t) =
g∑ j sx

j(t) contains oscillations with many different frequencies from different spins. At
large times, they go out of phase and cancel out in the continuum limit. This is the physi-
cal reason for the damping oscillation, which is called collisionless dephasing by authors
in reference[2][3].

4.3 ∆i ≥ eπ/2∆ f : exponential decay of order parameter

The dynamical vanishing of the order parameter occurs in the over-damped regime, when
the pairing strength, and hence the BCS gap is suddenly decreased below a certain critical
value ∆ f ≤ e−π/2∆i ≈ 0.21∆i or ∆i ≥ eπ/2∆ f ≈ 4.81∆ f . In this case, ∆(t) decays to zero
without oscillations.

The plot on the right of the time evolution of the
order parameter is obtained by using Runge-Kutta
method of the 4th order.[2] The order parameter is in
the unit of ∆ f , and the time is in the unit of 1/∆ f .
The order parameter in the initial state is ∆i = 4.81∆ f
with the asymptotic value ∆∞ = 0.

This behavior can be understood in the limit ∆ f /∆i ≈ 0, i.e. when the coupling is
turned off nearly completely. In this case, according to the evolution equation for s−j in
Eq.(12) by neglecting the second term on the right hand side

ṡ−j =−2iε js− (26)

each spin precesses freely and independently, the solution is simply

s−j (t) = e−2iε jts−j (0) = e−2iε jt ∆i

2
√

ε2
j +∆2

i

(27)
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Summing over all spins to get the order parameter

∆ = ∑
j

e−2iε jt ∆i

2
√

ε2
j +∆2

i

(28)

Going to the continuum limit by replacing the summation over j by integral over wave
vector

∆(t) =
∫

d3k
∆ie−2iεkt

2
√

ε2
k +∆2

i

∝
1√
∆it

e−2∆it (29)

we get the exponential decay of the order parameter and the system goes into gapless
state. In general, the above decay-law can be extended to the following form[4]

∆(t)
∆i

= A(t)e−2α∆it +B(t)e−2∆it (30)

where α = −cos p and π/2 ≤ p ≤ π is the solution of p = ln(∆i/∆ f )cot(p/2). The
parameter α has a property α → 0 when ∆ f /∆i → e−π/2 and α → 1 when ∆ f /∆i → 0.
The time-dependent coefficient A(t) and B(t) are power-law decay, A(t),B(t) ∝ 1/tν with
1/2≤ ν ≤ 2.

5 Conclusion: applicability of the theory

In BCS pairing dynamics, there are two characteristic time scales, quasi-particle relax-
ation time τε and order parameter dynamical time τ∆ ∼ 1/∆i.

Until now, our discussion is restricted at times much shorter than the quasi-particle
relaxation time. The pairing interaction is changed abruptly on a time scale τ0 ¿ τ∆,τε .
Definitely, at long time t À τε , the system will reach the BCS ground state with the
new coupling constants and the new order parameter ∆ f . For example, in the case of
∆ f < 0.21∆i where dynamical vanishing of order parameter occurs, shown in the graph
below[4]
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the order parameter exponentially decays to zero at times t ∼ τ∆ and the system goes into
a gapless steady state. However, the order parameter will finally recover to its equilibrium
value ∆ f at times longer than quasi-particle relaxation time. The theory we outlined in
previous sections applies only on the time scale t ∼ τ∆ ¿ τε .

Usually in superconducting metals, the variation of external parameter is slow com-
pared to τ∆ and quasi-particle spectrum evolves adiabatically. In contrast, while relaxation
rates in cold fermionic gases are quite slow, the external parameters, such as the detuning
from resonance, can change very quickly on the time scale of τ∆. This enables the BCS
correlations to build up in a coherent fashion while the system is out of thermal equi-
librium. In such a situation, theory must account not only for the evolution of the order
parameter, but also for the full dynamics for individual Cooper pairs.

To estimate the BCS parameter values for cold fermionic gas, we consider magnetic
fields not too close to the resonance where one can neglect the presence of the molec-
ular field and use the weak coupling theory. At particle density n ≈ 1.8× 1013cm−3,
which corresponds to Fermi energy EF ≈ 0.35µK, and the scattering length a ≈−50nm
for attractive interaction, we have Tc ≈ 0.006EF . The coupling constant is related to
Fermi energy by g = 2

π kF |a| and the order parameter is related to the coupling con-
stant by ∆ = 0.49EFe−1/g. An estimate of the order parameter dynamical time gives
τ∆≈ h̄/∆i≈ 2ms, while the quasi-particle relaxation time τε ' h̄EF/∆2

i ≈ 200ms = 100τ∆,
consistent with weakly damped oscillations of ∆(t).
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