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Abstract

The methods and ideas from the emerging field of scale-free networks have been
applied to a diverse group of problems. In this paper we survey some important theo-
retical developments and look at several prominent studies. Possible future directions
in the field are discussed.
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Figure 1: Random and scale-free networks (from [2]).

1 Introduction

The application of statistical mechanics to networks has proven to be relevant to a
wide variety of social, biological and technological networks. Unlike many areas of
physics which focus on microscopic or local interactions, the study of networks employs
inherently inductive techniques. Systems are studied using various metrics and then
plausible models are built which attempt to make contact with empirical studies. This
approach is necessary because as pointed out in [1], many network problems have local
dynamics which are unknown or ambiguous. Indeed, one of the goals of the fields is
to help explain how networks evolve. We begin by looking at the key ideas used in
network studies. We then look at several different systems to which these methods
have been applied. In this way, we hope to learn the some of the tools of the trade and
also look to gain some intuition about networks in general. We finish by discussing
some open questions and possible future directions.

2 Network architecture

We begin by considering the simplest possible random graph. Given N nodes we cycle
through each possible pair and connect them with a probability p; each connection is
called an edge. The resulting distribution of edges per node is bell-shaped and sharply
peaked about its mean (figure 2). None of the real-world networks we will investigate
in this paper are random graphs. As pointed out in [2], this is not surprising since
most networks do not develop in such an artificial way. In fact, we will see that the
distribution of edges per node is well-described by a power law in many different kinds
of networks (the number of edges per node is called the degree of that node). The
correctly normalized power law distribution is then given by

P (k) =
k−γ

ζ(γ)
. (1)

2



  

Figure 2: An illustration showing the scale-free nature of the internet. Web pages with
similar addresses are connected by similar colors. Note the existence of hubs which connect
a large number of sites. A feature of scale-free networks is that they are self-similar: there
are large hubs but also smaller hubs, which, in this illustration resemble kaleidoscope eyes.
From [2].

Networks that have this distribution are known as scale-free. [2] makes the observation
that while random networks resemble highway maps, scale-free networks look more
like airline service routes (see figure 1 and figure 2). Unlike random graphs, scale-
free graphs have a few nodes of very large degree (hubs). In many social networks
a relevant quantity is the average distance between any two nodes. A random graph
with N nodes has an average distance that scales as lnN [1]. Not surprisingly, scale-
free graphs are smaller (and in fact are maximally small). For example, the average
distance on scale-free graphs with 2 < γ < 3 goes like ln lnN [3]. Returning to the map
example, if I wanted to travel from Champaign to Santa Barbara, my itinerary would
probably take me from Willard to LAX via O’Hare followed by a commuter flight to
Santa Barbara. A road trip would take us through many of the major cities between
Illinois and California: St. Louis, Kansas City, Santa Fe, etc. Not surprisingly, the
existence of hubs in scale-free networks informs many of their salient features.

2.1 Scale-free networks

Why are power laws so ubiquitous in many different types of networks? (see table 1)
One of the earliest explanations came from Barabasi and Albert [1]. The Barabasi-
Albert (BA) algorithm generates a scale-free network based on the idea of preferential
attachment. At each time step a node is added to the network and a fixed number of
edges are attached to existing nodes. The probability of attachment is proportional to
the degree of the target node, a process in which ’the rich get richer’ [2]. It’s important
to distinguish between BA generated networks and the much larger class of random
scale-free networks. A random scale-free network is a network in which the distribution

3



of node degree is constrained to have the form of equation 1 but the graph is random
in all other respects. The mechanism of preferential attachment is certainly plausible
since in many social networks prestige is primarily based on the number of connections
that one has made.

There is strong evidence that the web of infection for many diseases also shows scale-
free behavior. Most ominously, standard epidemiological models applied to graphs show
that for any nonzero transmission rate an epidemic is inevitable on a scale free graph
with γ ≤ 3 [4]. This result is related to the fact the variance of the degree of each
node diverges in this regime. More generally, it’s clear that the ultra-small character
of scale-free networks makes a disease easier to spread.

Network Size < k > γ

WWW 4× 107 7 2.38/2.1
Movie actors 2× 105 28.8 2.3

Co-authors, SPIRES 56, 627 173 1.2
Sexual contacts 2810 3.4

Metabolic, E. coli 778 7.4 2.2
Words, synonyms 22311 13.48 2.8
Avian flu network 3346 1.2

Table 1: Several real-life networks taken from [1]. < k > is the average degree of
nodes in the network. γ is the exponent in equation 1. Note that there are two γ’s
for the WWW. The first describes the degree of incoming links, the second describes
outgoing links.

2.2 Building networks

One of the challenges in studying networks is that the topology of a network may
not be directly accessible. This is certainly the case for many disease networks. The
methods of data analysis presented in [5] are interesting because the network of disease
transmission was established indirectly. The study used all known cases of avian flu
observed in either wild or domestic birds between November 2003 and March 2007.
Specifically, the data consisted of 3346 triples (tn, λn, φn) where tn is the time in days
since November 25, 2003 of the nth incident; λn and φn are the latitude and longitude
of the reported case. Small et al. then constructed a network linking nodes i (ti, λi, φi)
to node j (tj , λj , φj) if

d(i, j) ≤ (tj − ti)µ (2)

and
0 ≤ (tj − ti) < Tmax (3)

where d(i, j) is the great circle distance between the nodes and µ is a positive constant
that represents the maximum rate of transmission of the virus. The raw data and
the constructed network are shown in figure 3. In order to test the robustness of
this approach, the authors examined various subsets of the data and found that the
resulting exponent (γ ≈ 1.2) is not sensitive to different partitions of the data. The
fact that this disease network has a scale-free topology has important implications for
containment strategies. As argued in [5], identifying hubs in a disease network is an
important step in developing immunization policy.

4



  

Figure 3: The map on the left shows the locations of avian flu outbreaks. The map on the
right shows the constructed network using the conditions in equations (2) and (3). Both
graphs are taken from [5].

The idea of nodes connected by edges is a powerful conceptual tool for many prob-
lems, even for some where the relevance of the network concept might at first seem
suspect. For example, networks have been used to model protein assembly in cells [1].
In order for proteins to function properly, they must adopt a specific conformation
[10]. Consider modeling the process of protein assembly by letting nodes represent the
different conformations of the protein. Two nodes are then linked if one conformation
can be obtained from the other by an elementary step (for example, a fold).

The translation of metabolism into graph theoretic language is more straightfor-
ward: biological compounds are represented by nodes. Two nodes are connected if the
corresponding compounds participate in the same biochemical reaction. The data used
in [6] were taken from the WIT database (http://igweb.integratedgenomics.com) and
at the time of the study the database contained information about the metabolic path-
ways of 6 archaea, 32 bacteria, and 5 eukaryotes. Because metabolism proceeds in one
direction, it’s possible to get information about the number of incoming and outgoing
links. In [6] they found that both incoming and outgoing links were universally scale
free with γ ≈ 2.2.

2.3 Hierarchical Networks

Although the BA algorithm generates self-similar networks, a scale-free node distribu-
tion alone does not preclude a hierarchical topology. As Ravasz et al. point out [7],
while some of the features of metabolic networks seem well described by a scale-free
architecture (a few highly connected nodes for example; they point out for example
that pyruvate and coenzyme A are ubiquitous in metabolic pathways), there are many
other features which are not accounted for by a BA generated network. For exam-
ple, metabolic networks are known to be hierarchical, a feature not compatible with
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a purely scale-free topology. An additional metric is clearly needed in order to probe
metabolic networks. Ravasz et al. therefore investigated the so-called clustering coef-
ficient to further analyze their data. For a given node, the clustering coefficient Ci is
given by

Ci =
2n

ki(ki − 1)
(4)

where n is the number of links connecting the nearest neighbors of the ith node to each
other. Since the number of these links can range between 0 and ki(ki−1)

2 , the average
clustering coefficient can range between 0 and 1 and is therefore a rough measure
of the connectedness of the graph. Now, for a BA type network with N nodes, the
distribution of clustering coefficients goes approximately as N−.75 whereas Ravasz et
al. found that for the metabolic networks they studied the average clustering coefficient
was independent of the network’s size. To account for this, the authors proposed what
they refer to as a ’hierarchical’ network. The network is generated in the following
manner. First, four completely connected nodes are taken as the starting point of
a graph. These four nodes are then copied and and the three outer nodes of these
copies are connected to the center of the original cluster (figure 4). This procedure
is repeated a large number of times. First, for this graph γ = 1 + ln 4/ ln 3 ≈ 2.26
and has an average clustering coefficient < Ci >≈ 0.6 independent of the size of the
network and therefore this model matches the data well. Of course [7] does not claim
that this method of generating their hierarchical network has anything to do with the
actual evolution of the network, just that the network constructed in this way roughly
approximates the topology of the real metabolic networks. Of course the next highly
non-trivial step is to understand what evolutionary processes led to this topology.

2.4 Spectral Properties

An alternative route to studying a network is to examine the spectral properties of
its adjacency matrix. An adjacency matrix captures the complete connectivity of a
network:

Aij =

{
1 if nodes i and j are connected
0 otherwise

(5)

The spectrum of eigenvalues ρ(λ) of this matrix gives a great deal of information
about it’s topology. An amusing special case is that of a large random network. The
distribution of eigenvalues turns out to be a semicircle!(see figure 5 and [1]) Eigenvalues
give important dynamical information about processes that take place on a network.
For example, the largest eigenvalue of an adjacency matrix determines how quickly
an epidemic will spread [8]. Unfortunately, the total connectivity of many real-world
networks is not known and even if it were calculating the spectrum of eigenvalues is
often not practical. In light of this, [8] has studied averageability of extreme eigenvalues
on scale-free networks. Specifically, they looked at ensembles of random scale-free
networks and found that the extreme eigenvalues of the adjacency matrix have a small
spread when averaged over the ensemble. Hence, the fact that the network is scale free
puts tight constraints on what the largest eigenvalue is likely to be. The success of
statistical mechanics is partly due to the fact that in the thermodynamic limit many
distributions (energy for example) are sharply peaked about their mean. As the study
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Figure 4: Examples of networks taken from [7]. On the left hand side are three schematic
illustrations of a scale-free network, modular network, and hierarchical network respectively.
On the right a much larger example of each of these networks is provided. For the scale-
free network, highly connected nodes are blue. These hubs are instrumental in keeping the
network together. The hierarchical network shows a scale-free topology but also embedded
modularity. The different hierarchical levels are represented in increasing order from blue to
green to red.

  

Figure 5: The spectral density of a random graph (semi-circular) and several BA generated
networks of various sizes (tent-like). The inset shows the decay of the leading edge of the
spectral density [1].
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of networks broadens, the statistical analysis of networks requires sound theoretical
grounding.

3 Network evolution

3.1 Preferential attachment

Of course the study of the statistical properties of graphs is a means to an end. A goal
of network research is to gain insight into the local rules which dictate the large scale
development of networks. Indeed, a great deal of network literature has focused on
dynamics. We would not expect the simple BA model of linear preferential attachment
to account for the wide variety of dynamical processes present in all scale free networks.
First, the BA model gives γ = 3 [1] whereas we have seen that different networks have
a wide range of exponents (see table 1). In addition, many real-world networks actually
show deviations from simple power laws. For example most real-world networks have
power law behavior with an exponential cutoff. One very natural explanation of cutoffs
is that in many networks nodes have finite lifetime [1]. Another interesting effect is
that in networks in which attachment preference Π(k) can be directly measured it is
often found that Π(k) is a power law rather than a simple linear function of k (as in
the BA algorithm).

3.2 Alternatives and Dissent

Preferential attachment is not the only possible explanation for the myriad of power
laws seen in networks. [13] introduced a model in which locally interacting agents have
partial and possibly incorrect information about the global network. Consider agents
i = 1, 2, ..., N which form the vertices of a network with E edges. Each agent has the
following information about the network.

Di(l) = agent i’s estimated shortest path to agent l (6)
Pi(l) = agent i’s nearest neighbor on the estimated shortest path to l (7)

The dynamics are as follows.
(1) Initial state: The network starts with N −1 agents connected to a center agent.

Additionally, there are E −N + 1 randomly placed edges between the N − 1 non-hub
agents. All the information that each agent has is initially correct.

(2) Loop
(i) An agent i and one of its neighbors j are chosen at random.
(ii) A third agent l is chosen randomly and if Di(l) > Dj(l) the edge between i and

j is rewired so that it connects i to k = Pj(l).
(iii) Information that i has is lost and there is complete sharing of information

between i and k.
Note that as rewirings take place, information that remote agents have becomes

inaccurate. [13] also introduced a more complicated variant by introducing a parameter
S. Now, the agent j receives a (tunable) fraction S of k’s information. The global
dynamics of the system are surprisingly sensitive to S. Above a critical value of S, a hub
(the node with the largest degree) becomes ’frozen’ and will never lose its central status.
As S is lowered, at a critical value of S the location of the hub becomes dynamic and the
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degree distribution becomes scale free. For very low values of S, fluctuations become
so large that no hubs develop and the resulting degree distribution is exponential. Not
surprisingly, a more efficient exchange of information has a stabilizing effect on the
system. Although [14] primarily focuses on the effects of preferential attachment on
the evolution of Wikipedia, the idea of local information exchange was invoked as a
possible secondary effect.

Doyle and Carlson have taken issue with the application of self-organized criticality
to certain designed systems, most specifically the internet. The idea behind highly
optimized tolerance (HOT) is that self-organization is often not present in a carefully
engineered system. For example, it is argued in [9] that large fluctuations are not a
dominant effect in internet traffic patterns because sophisticated protocols have been
specifically designed for flexibility and robustness and act to suppress such fluctuations.
Although a full exploration of the HOT ideas would take us too far afield, suffice it to
say that the objections of Doyle and Carlson are inapplicable to the types of networks
we’ve studied here. For example, the topology of web page connections is certainly not
optimized in the HOT sense.

3.3 Directed Graphs

For the most part, we have been discussing undirected graphs. However, many networks
like the internet are really directed graphs: web page links have a clear direction
associated with them. As we will see, ignoring the directional nature of a network may
actually lead to spurious conclusions! As pointed out in [11], this effect is an example
of Simpson’s paradox : correlations can change if different types of data are pooled.
Consider the following example [15]. In 1995, Derek Jeter had a batting average of
0.250 (12/48) while David Justice ended the year with 0.253 (104/411). Now, in 1996
Jeter was 0.314 (183/582) while David Justice had an impressive 0.321 (45/140). Note
that the combined batting average for the two years is Jeter 0.310 (195/630) while
Justice is at 0.270 (149/551)! The trend has reversed! Of course, there is no real
paradox involved here. But the point is clear: pooling data can lead to spurious
conclusions.

In [12], Newman looked at the internet as a simple undirected network and found no
correlation between the degrees of nearest neighbors. This would rule out preferential
attachment as a mechanism since preferential attachment leads to a positive correlation
in the degrees of nearest neighbors. However, [11] took the directionality of the internet
into account and they found that the node degree of a website correlated positively with
the degree of both upstream and downstream neighbors (figure 6). This study provides
an interesting cautionary note: models which ignore the directionality of graphs should
be regarded with suspicion.

4 Future Directions

As we have seen, two networks may have very different qualitative topologies even
though both are scale-free. Unlike critical exponents (in other areas of statistical
mechanics) which are often dictated by fundamental aspects of the problem (it’s di-
mensionality, for example), the exponents (γ for example) are in general tunable and
very similar networks can give rise to a range of γ’s [1]. For a power law preferential
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Figure 6: K̃in
nn and K̃out

nn measure the average degrees of upstream and downstream neighbors

respectively. The large graph is a histogram of K̃in
nn (squares) and K̃out

nn (triangles) plotted

against K̃, the average degree (incoming and outgoing links combined) of the various nodes.
Both the degree of upstream and downstream neighbors show a positive correlation with
the degree of the given node. The inset shows that if the data is pooled the correlation
disappears.

attachment (Π ≈ kα), changing α would lead to a change in γ. Also, very different
models can give power laws with exactly the same exponent. Of course this is a com-
mon problem in condensed matter problems. There are often many putative models
which can lead to similar behavior.

But the situation is not hopeless. As we have seen, there are many studies which
have gone a long way in helping explain the structure and, to a lesser extent, the
origin of networks. What are the ingredients common to these successful studies? The
first step in studying a proposed network is to get topological data. Whether the raw
data has topology built into it (as in [?]) or must be inferred (as in [5]) it’s crucial
that the various metrics are not sensitive to possible errors in the data or details of
how the underlying network is extracted. For example, if γ in [5] were sensitive to
the parameter µ, which value to take would become a nontrivial issue. Additionally,
many different underlying dynamics can give rise to power laws, so it’s crucial to use
several different metrics (such as the clustering coefficient) to give a more complete
picture of the topology. Any proposed model that is built to explain the data must
account for the various metrics. Better yet, if additional information about the nodes
is available (for example their relative age) it is crucial that this information be used to
corroborate the model. But a model which simply describes the connectivity can not
be the ultimate goal. Of course, a description of a disease network may go along way
in helping to combat the disease, but as far as our intellectual curiousity is concerned
studies must go farther. That is, the model must be used to gain insight into how the
network developed and how interactions hold it together.

The emerging study of networks shows great promise. As pointed out in [7], it
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would be very exciting to know what evolutionary processes led to the hierarchical
metabolic structure we see today. One of the challenges in studying the origins of life
is that as life is constantly evolving information is ostensibly lost. Perhaps the study
of modern biological networks will provide a means to look back and learn something
about our earliest ancestors.
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