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Abstract 

Bioconvection patterns, which are a collective phenomenon, usually appear 

due to upswimming of micro-organisms that are a little denser than water in 

suspensions.  When the upper surface of the suspensions becomes too 

dense due to the gathering of micro-organisms, it becomes unstable and 

micro-organisms fall down to cause bioconvection.  This essay will review 

the theoretical models and simulations, as well as experiments of 

bioconvection patterns. 
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1. Introduction 
 
Bioconvection occurs because micro-organisms, which are denser than water, swim 
upwardly on average.  When the upper surface of the suspensions is too dense due to the 
gathering of micro-organisms, it becomes unstable and micro-organisms fall down to 
cause bioconvection.  Return upswimming micro-organisms maintain this bioconvection 
pattern. 
 
There are two typical types of upswimming micro-organisms that are usually used in 
bioconvection experiments: bottom-heavy alga and certain oxytactic bacteria.  Although 
the bioconvection patterns formed by them are very similar, the mechanisms of 
orientation are different (Hill and Pedley, 2005).  
 
Bottom-heavy micro-organisms swim upward in still water because of the asymmetric 
mass distribution.  When such micro-organisms are in a flow field, the swimming 
direction is determined by the balance between the toques due to viscous drag arising 
from shear flow and gravity acting on the cell (Pedley et al., 1988).  Cells tend to swim 
towards regions of downwelling fluid, which is known as gyrotaxis.  The bioconvection 
experiments by using oxytactic bacteria are performed in a chamber with the upper level 
of suspensions open.  These bacteria consume oxygen and swim up gradients of oxygen. 
 
Theoretical models are established for both bottem-heavy alga and oxytactic bacteria.  
Numerical simulations of bioconvection are also carried out. 
 

2. Models 
 
2.1 Continuum models  
Continuum models are proposed on the assumption that the cell-cell interaction is 
neglected and the length scale of the chamber as well as the distribution of concentration 
are large compared with the cell dimension, so that variables are considered to be 
continuous (Pedley et al., 1988; Pedley and Kessler, 1990; Hill and Pedley, 2005).  The 
suspension is considered to be dilute, so that the volume concentration nv <<1, where 
n(x,t) is the number density of cells and v is the average volume of a cell. u(x,t) is defined 
as the bulk velocity.  Assuming water and cells cannot be compressed, followed by 
volume conservation, we have 

0u∇⋅ =
r                            (2.1) 

The conservation of momentum and cell number gives 

e
Du p nv g
Dt

ρ ρ= −∇ + ∆ +∇⋅Σ
r rr           (2.2) 
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Here, / / ( )Du Dt u t u u≡ ∂ ∂ + ⋅∇
r r r r , ep (x,t) is the pressure excess over hydrostatic, ρ∆  

is the density difference between cells and water, g is the gravity constant, Σ
r

(x,t) is the 

deviatoric stress tensor, cV
uur

 is the mean cell swimming velocity and D(x,t) is the cell 

diffusivity tensor.  
 

For bottom-heavy micro-organism, ˆc sV V p=
uur

, where p̂  is the unit direction vector 

and represents the ensemble average defined by 2ˆ ˆ( ) ( )f p d p⋅ ⋅ ⋅∫ .  Here f(p) is the 

density function of probability which should satisfy the Fokker-Planck equation 
2ˆ( )p r p

f pf D f
t

∂
+∇ ⋅ = ∇

∂
&                      (2.4) 

The cell diffusivity tensor D is defined by  

0

( ) ( ) ( )r rD t V t V t t
∞

′= −∫
r r r

,                     (2.5) 

Where ˆr s cV V p V= −
r r r

.  

If sV  is a constant, D is approximated as 

2 ˆ ˆ ˆ ˆ( )( )sD V p p p pτ= − − ,                (2.6) 

where τ is the direction correlation time 
 
Also, Σ  is assumed as 

Eµ2=Σ ,                          (2.7)  

where µ  is the fluid viscosity and E is the bulk rate of strain tensor. 

 
In the infinite environment, even though cells are swimming upwards, the concentration 
of cells n0(x,t) does not change.  A linear stability theory was applied to investigate in 
stability, and small perturbation amplitude ε  is introduced to the variables which can be 
expressed as 

,0 nnn ′+= ε   ,uu ′= ε  ,0 eee ppp ′+= ε  ,pkp ′+= ε          (2.8) 
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Substituting (2.8) into the governing equations (2.1), (2.2), (2.3) and (2.4), and keeping 
only linear terms give linear differential equations with constant coefficients.  Then the 
instability can be examined in terms of Fourier modes.  For the suspension of finite 
depth, instability occurs only if the gyrotactic Rayleigh number R exceeds a critical value. 
R is defined as  

µρ /2 BVR s= ,                       (2.9) 

where B is the gyrotactic orientation parameter 
 
The Nonlinear analysis of deep gyrotactic Bioconvection was explored by Bees and Hill 
(Bees and Hill, 1998).  The distance between the very first plumes can be predicted by 
analyzing the accumulative behaviour of individual micro-organisms.  On the 
assumption of no vertical variation, steady state and traveling solutions are found. 
 
For oxytactic bacteria, the governing equations are still applied, but the mean cell 
swimming velocity was assumed as 

CVc ∇= χ ,                        (2.10) 

Where χ is a constant and C is oxygen concentration that satisfies equation 

knCD
Dt
DC

c −∇= 2 ,                   (2.11) 

where Dc is the oxygen diffusivity. 
 
2.2 Microscale models 
In 1995, Dillon et al. established a microscale model of bacterial swimming (Dillon et al., 
1995), which represents micro-organisms as individual microbes.  In this model, very 
detailed geometry, such as flagellar rotation, hydrodynamic interaction of swimming 
microbes and microbial uptake, are considered.  Dillon et al. also performed the 
simulations of this model, but only several microbes were described in the simulation due 
to the detailed geometry considered in this model.  Some of prelim simulation results 
are presented in the next section. 
 
2.3 Particle models 
A particle model of chemotaxis was proposed by Hopkins and Fauci (Hopkins and Fauci, 
2002). They described micro-organisms as individual particles and ignored the geometry 
(like flagellar action) in detail.  By using this simplified description of micro-organisms, 
they managed to perform simulations with a large number of particles.  The assumption 
of homogeneous and incompressible dilute fluids was also made.  N discrete 
micro-organisms located at xk, k = 1, 2, …, N are considered in a rectangular region of 
fluild, so that the governing equations are obtain: 
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( , ) , k = 1, 2, ..., Nk
k k k

dx u x t s p   
dt

= +
r r

,                      (2.15) 

where c(x,t) is the chemical concentration and R(c) is the consumption rate which is 
dependent on the local concentration. 
 

3. Numerical simulations 
Ghorai and Hill have been carrying out numerical simulations of gyrotactic 
bioconvection for several years (Ghorai and Hill, 1999, 2000, 2007).  They used 
continuum models of Pedley et al. (Pedley and Hill, 1988) and solved the governing 
equations numerically to investigate the existence and stability of periodic arrays of 
two-dimensional gyrotactic plumes in bioconvection (Ghorai and Hill, 2000).  Some 
parameters, such as suspension depth, cell concentration, etc., are varied to examine the 
dependence of the wavelengths on the depth of these parameters.  The simulations 
demonstrate that wavelengths slightly increase with the depth of suspensions, not quite 
consistent with the experiment (Bees and Hill, 1997).  This inconsistence occurs 
probably because the simulations describe 2D system, but the experiments are performed 
in three dimensions.  The simulations also show wavelengths decrease with an increase 
of concentration, consistent with experiments.  The numerical simulations for different 
suspension depth are shown in the following figures (duplicated from Ghorai and Hill, 
2000).  Fig.1 and fig.2 show the evolution of cells in the chamber with same widths, but 
with different depths.  Fig. 3 shows the comparison of convection patterns at certain 
time for the different depths.  In 2007, Ghorai and Hill managed to simulate gyrotactic 
bioconvection in three dimensions. Fig. 4 shows the evolution of a single plume in three 
dimensions.   
 
Dillon et al. simulated micro-organism swimming by using microscale models (Dillon et 
al., 1995).  The simulations showed there is strong local hydrodynamics interaction 
between cells via the fluid media.  Fig. 5 shows the swimming of eight chemotactic cells 
with hydrodynamics in the time sequence of frames.  Two cells are marked.  Fig. 6 
shows the cells trajectories in a rum and tumble model.   
 
Matthew et al. used particle models to performe simulations of bioconvection parttern.  
Fig. 7 shows one example of parttern time evolution, consisting of approximately 
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85,7000 particles.  From those calculations, they demonstrated plume stability decrease 
with depth, and plume wavelengths increase with depth.  

 
                                              
 

 

 
 
      

Fig. 1 Concentration of cells at different
time in 0.333 cm deep and 5 cm wide 
chamber 

Fig. 2 Concentration of cells at different
time in 0.729 cm deep and 5 cm wide 
chamber 

Fig. 3 Concentration of cells at certain time in chambers of 5 cm 
width but of different depths 
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Fig. 4 Pattern formation of a single 
gyrotactic plume in three dimensions 

Fig. 5 Swimming of eight chemotactic
cells with hydrodynamics in the time 
sequence of frames 

Fig. 6 cells trajectories in a rum and tumble model 
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Fig. 7 Time evolution of convection patterns in particle models, consisting of 
approximately 85,7000 particles 
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4. Experiments 
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bees and Hill carried out controlled experiments and gave quantitatively analysis on 
bioconvection patterns formed by suspensions of the single-celled alga Chlamydomonas 
nivalis (Bees and Hill, 1997). The formation of the bioconvection patterns were captured by 
a video camera every 10 second.  For each of the measurements, 9 images were recorded. 
Then two-dimensional Fourier transforms were used to calculate the wavelengths of the 
bioconvection patterns, and to determine the dominant unstable wavenumber, “which is 
defined as the number of complete sinusoidal waves in a length of the same size as the 
image’s width”, as a function of time, cell concentration and suspension depth.  The 
results are presented in Table 1. 
 

Fig. 8 a series of snapshots of a suspension 
of the aerobic bacteria B. subtilis 

Bioconvection patterns have 
been known since 1848, and 
many observations were 
reported since then.  Fig. 8 
shows a series of snapshots of 
a suspension of the aerobic 
bacteria B. subtilis (Kessler et 
al., 1995).  The suspension is 
initially uniform.  When 
more and more B. subtilis
aggregate at the surface of the 
suspension, instability occurs, 
and plumes appear.   
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5. Conclusion 
Several models were established for bioconvection.  Computational simulations in 
different models were also performed, which gave the theoretical prediction of 
bioconvection pattern formation, and were consistent with or very close to experimental 
observations.  However, most models are only valid on the assumption of dilute 
suspensions, so that the models of concentrated suspensions would be further 
investigated.   
 
 

Table 1.  The results of 39 measuremnts.  λ is the physical wavelength, defined as
λ= Iw/k, where k is the wavelength.  The subscript 0 means the first unstable mode and 
infinity means the final mode.  
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