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Abstract

This essay describes two exotic Goldstone particles. One is the pseudo-
Goldstone boson which is related to spontaneous breaking of an approximate
symmetry. The other is the Goldstone fermion which is a natural result of
spontaneously broken global supersymmetry. Their realization and implication
in high energy physics are examined.



1 Introduction

In modern physics, the idea of spontaneous symmetry breaking plays a crucial role in
understanding various phenomena such as ferromagnetism, superconductivity, low-
energy interactions of pions, and electroweak unification of the Standard Model.
Nowadays, broken symmetry and order parameters emerged as unifying theoretical
concepts are so universal that they have become the framework for constructing new
theoretical models in nearly all branches of physics. For example, in particle physics
there exist a number of new physics models based on supersymmetry. In order
to explain the absence of superparticle in current high energy physics experiment,
most of these models assume the supersymmetry is broken spontaneously by some
underlying subtle mechanism. Application of spontaneous broken symmetry is also
a common case in condensed matter physics [1]. Some recent research on high T,
superconductor [2] proposed an approximate SO(5) symmetry at least over part of
the theory’s parameter space and the detection of goldstone bosons resulting from
spontaneous symmetry breaking would be a 'smoking gun’ for the existence of this
SO(5) symmetry.

From the Goldstone’s Theorem [3], we know that there are two explicit common
features among Goldstone’s particles:
(1) they are massless;
(2) they obey Bose-Einstein statistics i.e. they are boson particle.
However, there could be exception to these rules if we loosen the precondition of
the Goldstone’s Theorem. Frist, if the symmetry to be broken is only an approxi-
mate symmetry rather than an exact one, the Goldstone particle can gain a small
mass due to the existence of the explicit symmetry breaking term. Second, If a
fermion-type symmetry such as supersymmetry is spontaneous broken, the Gold-
stone particle would be fermion called goldstino [4].

In the following sections, we will explain in detial the two exotic goldstone par-
ticles mentioned above. Section 2 is devoted to the pseudo-goldstone boson. This
particle is generated from spontaneous breaking an approximate symmetry. We
consider the application of this formalism to the low energy pion theory. In section
3, we introduce the concept of supersymmetry and its breaking mechanism. Then
we will discuss the implication of local supersymmetry. Finally, the role played by
supersymmetry in grand unified theory (GUT) is reviewed.



2 Pseudo-Goldstone Boson

The standard theory of the strong interactions is quantum chromodynamics (QCD).
QCD is described by the lagrangian density
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where G}, a =1,2,...,8 is the field strength tensor for the gluon fields. The quarks

are represented by Dirac spinors ¢,, where n = 1,...,6. In order of the increasing
mass, these are: u,d,s,c,b and t. The quark masses, in GeV, are m, = 0.0015 —
0.005, mg = 0.003 —0.009, ms = 0.06 —0.17,m, = 1.1 —1.4,m, = 4.1 —-4.4 and m; =
173.8 5.2, The strong interactions are believed to bind the quarks and gluons into
bound states, which correspond to the observed strongly interacting particles (or
hadrons). Figure 1 gives the masses and some of the quantum numbers for all of
the hadrons who masses are less than 1GeV .

Particle  Quark Content Mass (GeV) Spin Isospin

7 (xM)[7"] du(ud)[um, dd] 0.140 [0.135] 0 1
70 W, dd 0.135 0 1
KH(KY) us(dF) 0.494 (0.498) 0 %
K (K" s(sd) 0.494 (0.498) 0 1
iy i, dd, s5 0.547 0 0

p (PP du(ud)[u, dd] 0.77! 1 1
w uT, dd, 55 0.782 1 0
K*H(K*9) us(ds) 0.892 (0.896) 1 4
E(K") s7(sd) 0.892 (0.896) 1 3
7 U, dd, 55 0.958 0 0

fo uT, dd, 53 0.980 0 0

g o, dd, 55 0.980 0 1
p(n) wud(ddu) 0.938 (0.040) 1 1

Figure 1: Masses and Quantum Numbers of the Lightest Hadrons [1]

The most significant feature about this particle spectrum is that the lightest
two quarks u and d have masses which are much smalller than all of the masses of



the states which make up the spectrum. So the QCD dynamics may be well ap-
proximated by taking m,, my =~ 0. Under this approximation, the QCD lagrangian
acquires the symmetry below
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where Uy and Upg are arbitrary two-by-two unitary matrices having unit determi-
nant. The symmetry group obtained in this way is G = SUL(2) x SUg(2), which is
chiral symmetry treating left- and right- handed fermions differently.

If the chiral symmetry G were not spontaneously broken by the QCD ground
state |€2), then all of the observed hadrons should fall into representation of G.
However, this is not seen in the spectrum of observed hadrons. Instead the known
particles organized themselves into roughly degenerate representations of theap-
proximate symmetry of isospin: SU;(2). It can be understood at the quark level to
consist of the diagonal subgroup of G, for which U, = Ug. This suggests that the
ground state of QCD must spontaneously break the approximate symmetry group
G down to the subgroup H=SU;(2), for which:

(5) - (i)

From the Goldstones’ Theorem, we know that the low-energy spectrum of the
theory must include the corresponding Goldstone bosons. If G were an exact sym-
metry, then the corresponding Goldstone bosons would by exactly masses. But G is
only a real symmetry in the limit of vanishing quark masses, so the Goldstone bosons
need only vanish with these quark masses. The lightest hadrons 7% and 7° have the
precisely the quantum numbers of the Goldstone bosons for the symmetry-breaking
pattern SUL(2) x SUR(2) — SU;(2). The small masses of pions are protected by
the fact that v and d quarks are much lighter than the natural scale of strong inter-
actions A ~ 1 GeV. Particles which are light, but not massless, due to the fact that
they are the Goldstone bosons of an approximate symmtry of a problem are called
pseudo — Goldstone bosons|T7].

Next, we will examine the mass of pions due to the existence of small explicit
symmetry breaking terms (quark mass terms). In low-energy effective field theory
of pions, we can expand quantities in power of the light-quark masses and this



technique is called chiral perturbation theory. Detailed calculation [1, 5] gives the
mass relation below
) 3
m._ = (mu + md)ﬁ
where M is the mass scale of chiral symmetry breaking and F) is the pion decay
constant.

First, the squared mass of pions only depend linearly on the sum of m, and my.
As long as m, and my both are small compared to the characteristic of QCD, so is
the mass of pions. Second, the mass of pions does not rely on the isospin-breaking
difference m, — my and degenerate for all three pions. The observed mass difference
between the charged and neutral pions are mainly due to the isospin-breaking elec-
tromagnetic interaction.

Actually, we can combine the next-lightest particles K and n with the pions to
form new set of Goldstone bosons for the pattern SUL(3) x SUg(3) — SUy(3), which
would be the limit case when the masses of the lightest three quark u, d and s vanish.
From general effective field theory, we know that although the Goldstone field can
only appear as a nonlinear representation of the broken part of the symmetry group
G/H, they can serve as a linear representation for the unbroken symmetry group
H. Indeed, the lightest eight mesons 7, K and n have the exact quantum numbers
as an octet representation of the unbroken SUy (3) symmetry, which is the famous
‘eightfold way’ proposed by Gell-Mann, see Figure 2.

Since the light meson 7, K and 7n could be regarded as Goldstone boson of the
broken chiral symmetry, their low-energy interactions are strongly restricted by the
symmetry breaking pattern. So the idea of treating pions as Goldstone bosons is
very predictive on low-energy pion-nucleon scattering experiment [6] and indeed
it is well confirmed by the experiment results among which the most well-known
is the Goldberger-Treiman relation. As clarified by Nambu and Weinberg [5], the
Goldberger-Treiman relation is a natural result of spontaneous chiral symmetry
breaking and the appearance of the massless or nearly massless pion is a symptom
of a broken exact or approximate symmetry.
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Figure 2: The meson octet: eightfold way

3 Goldstone Fermion—goldstino

The Standard Model of high energy physics provides a remarkable successful de-
scription of presently known phenomena. However, the Standard Model is still now
a complete story about elementary structure of nature since it doesn’t include any
quantum description of gravity. The fact that the ratio Mp/My, (Planck scale
Mp ~ 10™GeV and the electroweak scale My, ~ 100GeV) is so huge is already
a powerful clue to the character of physics beyond the Standard Model, because
of the ”hierarchy problem” or "naturalness problem” . The Higgs potential is dis-
turbingly sensitive to the energy scale of the underlying physics due to the existence
of quadratically divergent corrections to the Higgs boson squared mass. One way
out of this problem is to introducing supersymmetry to the Standard Model. Su-
persymmetry can remove the quadratical divergence by requiring that each has a
partner particle with different statistical property. However, supersymmetry also
requires every particle and its partner have same mass, which is not seen in the ob-
served particle spectrum. So in many versions of supersymmetric standard models,
people speculate that supersymmetry is spontaneously broken.

A supersymmetry transformation turns a bosonic state into a fermionic state, and



vice versa, so its generator () must be an anticommuting spinor with the property
Q|Boson) = |Fermion),  Q|Fermion) = |Boson).

Since supersymmetry is a fermion-type symmetry unlike those symmetry in the
Standard Model, the Goldstone particle with the same quantum numbers as the
broken supersymmetry generator must obey Fermi-Dirac statistics, i.e. it must be
a fermion rather than a boson, so called goldstino.

Next we will give a rough proof of the existence of the goldstino. From the basic
supersymmetry algebra [4], the Hamiltonian operator H is related to the supersym-
metry generators through the equation

H= i(QlQJ{ +QIQ1 + Q.0 + Q1Q,)

where the supersymmetry generator )., o = 1,2 is a Weyl spinor under the Lorentz
transformation. If supersymmetry is sponteneously broken in the vacuum state, then
the vacuum must have positive energy, since

1
(H) = Z(IQHON + 1 Qu0)|1* + [Q510)]* + [1Q2[0) %) > 0

Neglecting spacetime-dependent effects and fermion condensates, we have (H) =
(V), where V is the scalar potential. Under the formalism of superfield V' can be
written as below

V(¢,¢*) — FHF’@“’ %DaDa
where F; is the auxiliary field component of the chiral superfield and D* is the
auxiliary field component of the gauge field of the gauge superfield. To be spe-
cific, auxiliary fields means they don’t have kinematic term of their own in the
Lagrangian, but using field equation, they can be replaced by the products of scalar
field components of the superfields, which is

Fy=-W"(¥), D"=—g(¢xT"9)

where W(¢) is the functional derivative of the superpotential W (¢) which an an-

alytic function of scalar fields, i.e.W'(¢) = %ﬁ), (also write W% = ‘;2(%?), and
i L)

T“ is the matrix of corresponding gauge transformation. In order to have (V') > 0
required by the broken supersymmetry , it must be that (F;) # 0 or (D?%) # 0.
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Under the Weyl spinor basis (A%, ;) (where \* is gaugino and ); is chiral fermion),
after some of the scalar fields in the theory obtain VEVs, the fermion mass matrix
has the form [4]:

S I
P\ Ve w)

Using the gauge invariance of the superpotential and minimum condition of the
scalar potential (0V/0¢;) = 0, we can find the mass matrix mp annihilates the

vector
“= ( <DZ%>¢2 )

So G is a massless Weyl fermion with the same quantum number of the broken super-
symmetry generator, which implies it is proportional to the goldstino wavefunction.
From the derivation above, we find that if global supersymmetry is spontaneously
broken, then there must be a massless goldstino, and its somponents among the var-
ious fermions in theory are proportional to the corresponding auxiliary field VEVs.

What will happen if we promote the global supersymmetry to a local (gauge)
one? Is there any Higgs mechanism related to the spontaneous gauge symmetry
breaking? The answer is yes [5]. When dealing with the local supersymmetry trans-
formation, we will inevitably encounter gravity interaction, since supersymmetry
generator is related with spacetime transformation in the supersymmetry algebra.
Like other gauge transformation, we need to introduce a "metric” superfield to make
derivative terms covariant under the local supersymmetry transformation. The met-
ric field naturally appear as the vector component of the "metric” superfield (which
has a Lorentz index) and the correponding Weyl spinor component is so called " grav-
itino”. Through detailed derivation, we can find the metric field is a massless tensor
with the properties required by general relativity and gravitino is a massless spin—%
field, with two spin helicity states, which could be thought of as the ”gauge” field
of the local supersymmetry transformation. So the Localization of supersymmetry
simply involves the gravity interacton—such formalism is called supergravity, which
is currently a promising candidate of quantum gravity theory. Once sypersymmetry
is spontaneously broken, the gravitino acquires a mass by absorbing the goldstino.
The massive spin—% gravitino has four helicity states, of which two were originally
assigned to the would-be goldstino. This is called the super — Higgs mechanism.

Finally, we want to mention another motivation for supersymmetry from the
grand unified theory (GUT). Since supersymmetry introduces new couplings as well
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Figure 3: RG evolution of the inverse gauge couplings a; !(Q)in the Standard Model
(dashed lines) and the MSSM(solid lines) [4].

as new particles into the Standard Model, it can change the behaviors of gauge
couplings as the energy scale varies. Figure 3 compares the RG evolution of the
a, !, including two -loop effects, in the Standard Model and the MSSM (minimal
supersymmetric standard model). Unlike the Standard Model, the MSSM includes
just the right particle content to ensure that the gauge couplings can unify, at a scale
My ~ 2 x 10'GeV which is above the lower bound of the GUT scale suggested by
the proton decay experiment.

Supersymmetry not only solve some theoretical problems of Standard Model, but
also enrich Standard Model with many new phenomenological features. It is well
expected that the existence of supersymmetry in TeV energy scale may be confirmed
by the coming LHC experiment.

4 Conclusion

Instead of giving a summary of the essay, we will give a comment on the mass of
the pseudo-Goldstone boson. In the case of spontaneous breaking an exact sym-
metry, there is no difference between the vacuum state and the Goldstone mode



under the long wavelength limit, so in the low energy effective Lagrangian of the
Goldstone mode every term contains a spacetime derivative, which is the origin of
the gaplessness and low energy decoupling properties of the Goldsone mode. How-
ever, the situation changes when we add a small explicit symmetry breaking term
to the Lagrangian. The symmetry breaking term will pick out a special direction
of the vacuum in which the perturbative potential is minimized. Otherwise, the
vacuum state will not be stable under the perturbation. The process of choosing
the direction of vacuum state is called vacuum alignment. Due to the existence of
the explicit symmetry breaking term, the excitation in the Goldstone mode will cost
energy and thus the Goldstone field will gain a small mass which will vanish as the
the explicit symmetry breaking term disappears.
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