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Abstract
Pure LaMnO3 is an insulator. But, when doped with appropriate

amount of doubly valenced impurities, it becomes a conductor retain-
ing the ferromagnetism. Notion of double exchange has been devised
to explain this phenomena. Along with this ferromagnetic conductivity,
manganites show a variety of physical properties. Some of spin, charge,
and orbital orderings are illustrated. Neutron scattering and electron
diffraction is useful tool investigate the spin and charge ordered state of
manganites. Also, resonance X-ray scattering can give a direct evidence
of orbital orderings. Some aspect of Dynamical mean field theory is pre-
sented. In some sense, it has a analogue to classical mean-field theory. But
it retinas the local fluctuation. This formalism is applied to the colossal
magneto-resistance of manganite.

Manganite Manganese compounds of AMnO3 (A = La,Ca,Ba,Sr,Pb,Nd,Pr)
have a perovskite structure. Depending of composition of A ions, manganites
show a variety of electrical and magnetic properties, including magnetic, charge,
orbital orderings, and metal-insulator transition. If A is all trivalent ions such
as La, all of manganese ions are Mn3+. If A is all divalent ions such Sr, all
of manganese ions are Mn4+. If A is the composition of trivalent and divalent
ions, both of Mn3+ and Mn4+ are present. Recently, it’s been shown that its
electrical conductivity has a large dependence on the external magnetic fields.
These are also know as colossal magneto-resistance(CMR).

Double Exchange One of remarkable attempt to understand doped mangan-
ites is the Double exchange mechanism. Zener propose this exchange mechanism
in 1951. This still remain the core understanding of manganese these days. We
know that the electronic structures are mostly determined by the d-orbital of
Mn. In the presence of the cubic crystal field, the degenerate d-orbitals split
into t2 and e2g orbitals. And it is believed that the Hund’s exchange energy is
large enough that all electrons in the e2g orbital are aligned and form a S = 3/2
states. e2g orbital is hybridized with oxygen 2p orbital. In doped manganites,
Mn3+ and Mn4+ ions coexist and following two configurations are degenerate

ψ1 : Mn3+O2−M4+ and ψ2 : Mn3+O2−M4+
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The transfer matrix between these two states is due to the simultaneous elec-
trons transition from Mn3+ to O2− and from O2− to MN4+. Because the strong
Hund’s exchange interaction, ferromagnetic configuration can lower the hop-
ping energies. In this core electrons’ ferromagnetic configuration, ψ1 and ψ2 are
mixed and give a mechanism for the ferromagnetic conductivity.

Kubo and Otaha(1972) gave a complete double exchange treatment, Starting
with following Hamiltonian

H = −J
∑
i,σ,σ′

(Si · σσ,σ′) c†iσciσ′ +
∑
i,j,σ

tijc
†
iσcjσ

, where c†iσ, and ciσ are creation and annihilation operators for eg electrons, tij
is a transfer matrix, J is a intra-atomic exchange interaction, Si is the spin due
to the t2g core electrons. They treat tij transfer elements, which is considered
very small compared to J , as perturbation, and restrict the Hilbert space to the
subspace with each electron spin has spin parallel to the localized spin. Effective
Hamiltonian is the following∑

i,j,σ,σ′

tij (1−i−σ) c†iσ
(
P †i P

†
j

)
σσ′

(1− nj−σ) cjσ′

and (
P †i

)
σσ′

=
Si · σσσ′ + (S + 1) δσσ′

2S + 1
They applied the spin wave approximation to this model, and calculated the
temperature dependence of resistivity and found that it is proportional to T 9/2.

LaMnO3 and CaMnO3 structures These are two end compounds. Man-
ganese ions have 3+ valencies in LaMnO3 and 4+ in CaMnO3. LaMnO3 is
orthorhombic, and its space group is Pnma. Magnetic ground state is anti-
ferromagnetic, and is often called A-type. All the moments in the same a − c
planes are aligned but the moments of adjacent a − c planes anti-aligned.
CaMnO3 is cubic and its space is Pm3m. At ground state, it is also anti-
ferromagnetic. This states are composed of two interpenetrating face-centered
cubic lattices with opposite spins.

Its strong on-site Coulomb repulsion, charge ordering has been expected. Fig
3 shows some of super-lattice peaks of La0.5Ca0.5MnO3 along with fundamental
Bragg peaks. This system has same number of Mn3+ and Mn4+ ions. The
fundamental Bragg peaks are labeled by (a), (b), and (c). These are (2,0,0),
(0,2,0), (1,1,0), respectively. It clearly shows (1/2, 0, 0), (0, 1/2, 0) super-lattice
peaks. In the schematics, open circles represent Mn4+ and close circles represent
Mn3+ ions.

Figure 2. shows that the integrated intensity of LaMnO3 of (3,0,0) reflection
and the fluorescence data. From the flourescence data, we can locate the K-
absorption edge of Manganese ion. It is about 6.552 KeV. (3,0,0) reflection is
forbidden, but this shows a sharp peak about 3eV above the K-absorption edge.
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Figure 1: LaMnO3

unit cell

Figure 2: Orbital and Spin ordering of LaMnO3 and energy level of Mn 4p
orbital in ordered states.
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Figure 3: Electron diffraction image of La0.5Ca0.5MnO3 and schematic of charge
orderings

This can be explained by the resonance between 1s and 4p orbital through the
dipole transition. Dipole transition to 3d orbital is allowed, but it is far below
the K-absorption edge.

Colossal magnetoresistance Colossal magnetoresistance is the phenomenon
of unusually large effect of external field on the electric resistivity. Initially
discovered in 1993 by von Helmolt et al., these material has been intensely
researched because of its potential use in the information technology. Mag-
netoresistance of conventional material is limited up to 5%. But the Colos-
sal magnetoresistance material(usually magnates) have a order of magnitude
change of resistivity. Depending on the magnitude, it is called either Giant
magnetoresistance(GMR) or Colossal magnetoresistance(CMR). Because of its
strong correlation of constituent particles, there is no unifying theory describing
the physics of perovskite-like CMR materials.

Strongly Correlated System Materials with open d or f orbitals show some
of properties that can not be explained by the band theory or self-consistent one-
particle theory(e.g. Hartree Fock approximation). This is because the d and
f orbitals are spatially confined, electrons in these orbitals experience strong
Coulomb interaction with each other. This means that these strongly inter-
acting electrons can not be described by the mean field theory, where each
constituent particle experience the mean field generated by the all the particles
in the system. In the mean field theory, all the correlation are averaged out,
each particle moves independently in the mean field. At high temperature, with
rapidly varying thermal fluctuation, this approximation usually gives a better
results. But its applicability to the strongly correlated system is limited.
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Figure 4: Closed circle indicates integrated intensity of (3,0,0) around K-
absorption edge and open circles are flourescence

Dynamical Mean Field theory In Hartree-Fock approximation, Both of
temporal and spatial fluctuation are ”frozen out”. But in some systems, without
considering local fluctuation, we can’t see the essential aspect of the system. In
this sense, dynamical mean field theory is distinguished from the Hartree-Fock
approximation. In DMF, the local fluctuations are taken into account to begin
with. In this scheme, the single site is chosen, and we integrate out the all other
parameter except those of that single site.

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑
σ

c†oστG−1
0 (τ − τ ′) coσ (τ ′) + U

∫ β

0

dτ n0↑ (τ)no↓ (τ)

G (τ − τ ′) ≡ −〈Tc (τ) cτ (τ ′)〉Seff

In contrary to the Weiss mean field theory, G−1
0 is a function of time instead of

a single number. In the Weiss mean field theory, it is a just a effective magnetic
field. this quantity is the equilibrium value of the microscopic magnetic field.
This is the consequence of the fact that in the DMF, the local fluctuations are
taken into account even though spatial fluctuation is integrated out. In close
analogue to the Weiss mean field theory, the self consistency condition can be
written as

G (iωn)−1 = iωn + µ+G (iωn)−1 −R [G (iωn)]

,where G is the local Green’s function calculated from the effective action Seff .

G (τ − τ ′) ≡ −〈Tc (τ) c† (τ ′)〉Seff
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Figure 5: A single site is considered to be embedded in the electron reservoir,
where the electron reservoir is described by a ”Weiss function” G−1. Through
the interaction with the reservoir, the state of singe site can change in time. All
of its possible states are empty, spin-up, spin-down, doubly occupied states (
|0〉, | ↑〉, | ↓〉, | ↑↓〉 )

and

G (iωn) =
∫ β

0

G (τ) eiωnτ , ωn ≡
(2n+ 1)π

β

R (G) is the reciprocal function of the Hilbert transform of the density of state
of the lattice excluding the single site. if non-interacting density of state D (ε)
is given,

D (ε) =
∑
k

δ (ε− εk) , εk ≡
∑
ij

tije
ik·(Ri−Rj)

the Hilbert transforms and its reciprocal can be written as

D̃ (ζ) ≡
∫ ∞
−∞

D (ε)
ζ − ε

, R
[
D̃ (ζ)

]
= ζ

Self-consistency condition The Hubbard model will be considered as an
example here. It can be written as following

H = −
∑

<ij>,σ

tij

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓

The partition function of this model can be written as the functional integral
over Grassman variables c†i and ci.

Z =
∫ ∏

i

Dc†iσDciσe
−S

S =
∫ β

0

dτ
(∑
iσ

c†iσ∂τ ciσ −
∑
ij,σ

tijc
†
iσcjσ − µ

∑
iσ

c†iσciσ
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+U
∑
i

ni↑ni↓
)

Integrating out over all the variables except c†oσ and coσ, effective action can be
defined as

1
Zeff

e−Seff [c†oσ, coσ] ≡=
1
Z

∫
i 6=o

[dc†iσ][dciσ]e−S

Once we get the effective action Seff , we can calculate the local correlation
function of the original Hubbard model. Splitting the original action, S =
S(0) + S0 + ∆S, where S0 is the action of the lattice excluding the single site,
and

S0 =
∫ β

0

∑
σ

c†oσ (∂τ − µ) coσ + Uno↑no↓

∆S = −
∫ β

0

dτ
∑
iσ

tio

(
c†iσcoσ + c†ciσ

)
Thus, S0 represents a free part of action of the single site, and ∆S represents
the coupling between the single site and the rest of the system. In the limit of
infinite dimensionality, this form can be simplified, because the coupling with
the nearest neighbors are dominant.

G−1
0 (iωn) = iωn + µ−

∑
ij

toitojG
(0)
ij (iωn)

, where G(0)
ij is a Green’s function of Hubbard model with a single site removed.

It has a following relation withe the original Hubbard model.

G
(0)
ij = Gij −

GioGoj
Goo

Using the last two equations, we can compute the following

∑
ij

tiotjoGij −

(∑
i

tioGio

)2

/Goo

Colossal magneto-resistance in manganite Millis and Shraiman(1996)
showed that the colossal magneto-resistance of La1−xSrxMnO3 is the conse-
quence of the strong electron-phono coupling and double exchange effect. The
phenomena of very large resistivity for T > Tc and the sharp drop of resistivity
below Tc cannot be explained by double exchange mechanism. Their argument
is ”For T > Tc, strong electron-coupling coupling localizes the conduction band
electron as polarons, but the polaron effect is turned off as T is reduced below
Tc, resulting in the metallic state”

H = Hel +HJT
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Figure 6: (Upper left) Resistivity calculated with different couplings λ =
1.2(top), 1.12, 1.05, 0.95, 0.85, 0.71(bottom) (Lower left) Magnetic field de-
pendence of resistivity. (Upper right) Resistivity calculated with different cou-
plings λ = 0.71(bottom), 1.12, 1.41, 1.49, 1.58(top), (Lower right) Magnetic
field dependence of resistivity.

Hel = −
∑
ijα

tabij d
†
iaαdjbα − JH

∑
i,a,α

Sic · d
†
iaασdiaα +

∑
i

h · Si

HJT = g
∑
jaσ

d†jaσQ
ab (j) djbσ + k

∑
j

[
Q2 (j) + Π2 (j) /2kM

]
, where diaσ is a creation operator for an outer-shell d electron of spin σ at i.
”The local lattice distortions which cause the Jahn-Teller splitting transforms
as a two fold degenerate representation of cubic group which we parameterize
by a magnitude and an angle φ. They couple to the electron as a traceless
symmetric matrix Q = r [cos (φ) τz + sin (φ) τx].” Taking JH → ∞ ( because
we are interest in high temperature phenomena ) and treating the phonon and
the core spin classically. Partition function can be written as

Z =
∫
rdrdφdΩexp[−tr2/2T + Trln

(
tG−1

eff + λr · τ + JHSc · σ
)

+ h ·Ω].

, where Ω is the unit vector along Sc and t = D/4 ( D is a the bandwidth ),
and λ is a dimensionless electron-phonon coupling constant λ = g/

√
kt.
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