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Cities exhibit emergent properties. For examgie, distribution of the number of cities with
respect to population is a power law across mealtggatial, temporal, and cultural scales. Spe-
cific emergent phenomena of urban developmentigoeissed. Current theories of urban devel-
opment are described and evaluated with regar@vowell they model emergent properties of
urban growth.



Introduction

Citiesare emergent phenomena. A city exists because afttbeg interactions among
humans and their resulting collective behaviorrp8singly, however, citieshemselves exhibit
emergent behavior. For example, the distributiboittes with respect to population is a power
across multiple spatial, temporal, and culturalesca Physicists know this type of emergence
within emergence from the study of vortex states,example, but the study of urban growth
provides a new and non-technical example of eméitggmavior.

Emergence in urban growth demonstrates that differécroscopic theories can give rise
to the same macroscopic physics. A successfulosgopic theory of urban development taking
into account human interactions is a daunting ntaogy problem. As in superconductivity, re-
searchers have put forth phenomenological thedirgs Even though the different theories of
urban growth are vastly different, they reproddwetame emergent behavior.

From an intellectual perspective, the problem dfanr growth is interesting because it
maps onto different areas of physics. The firstiet® of urban growth borrowed from theories
of aggregation. The aggregation model, it turnts suthe same as the problem of electric dis-
charge and dielectric breakdown. The dielectreakdown model yields additional insight into
the mechanisms responsible for urban growth. Sjuesd models have used percolation theory,
stochastic models, and phenomenological differeatjaations. The study of urban growth may
seem at first glance a mundane problem, but deepestigation unearths interesting and subtle
physical problems. In the next section | discissore precise terms the emergent properties of
urban development. Then | describe and evalutde @urrent models of urban growth.

Emergence in Urban Growth

In Human Behavior and the Principle of Least Effort, George Kingsley Zipf argues on
the basis of the economy of effort that the disttitn of the number cities with respect to popu-
lation ought to follow power law behavior [1]. dbes, in fact, and the power law description is
SO exact and apparently universal that it has donfiee known as Zipf's law. Figure 1(a) shows
that the population distribution of the 2700 latgesies in the world, the 2400 largest cities in
the US, the 1300 largest municipalities in Switzed, and the 10 largest countries in south
Europe all exhibit the same power law behavior veixiponent -2. These data show that cities
conform to Zipf's law through nearly 5 decadesizesand in various cultural settings [2]. The
same power law holds for the distribution of citéssa function of area and in different years [3]
as shown in Figure 1(b). Note that in the Londod Berlin data, the data represent small towns
that comprise the larger cities, not actual indelpan large cities. Remarkably, Zipf's law de-
scribes the distributions of countries, municipedif cities in different countries, cities in the
same country, and towns in the same city in diffegears. In each of these cases, the exponent
is always -2.

Cities also typically display a population dengityfile that decays exponentially with
distance from the city center, or central busirdisgict (CBD) [4]. Over time, the density gra-
dient diminishes, corresponding to the phenomeriaecentralization as in Figure 1(c).
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Figure 1. (a) Population frequency for the 2700 largest
world cities, 2400 largest cities in the US, 1300 largest
municipalities in Switzerland, 10 largest countries in
south Europe. The straight lines have slope -2. From
[2]. (b) Area distribution for towns in London and Ber-
lin. From[3]. (c) Population density gradient in Berlin
over time. From [3]. (d) Images of Berlin in 1875,
1920, and 1945. From [4], said the girl with kaleido-
SCope eyes.




Urban developments also exhibit fractal propertigdseories of urban development usu-
ally consider a 2-d square lattice, where eaclcéattite may be occupied or unoccupied. If the
number of occupied lattice sites enclosed by decotradius R from the CBD scales as

N(r)dr?,

anda is not an integer, themis thefractal dimension of the pattern and describes how the area
of the pattern scales with its linear size. Eqlandy, the fractal dimension of a pattern de-
scribes the dimensionality of its boundary. A lw#h dimension larger than unity fills more
space than a straight line. The fractal dimerssmimmost cities lie between 1.6 and 1.8 [5]. The
successive images of Berlin in Figure 1(d) lendlitpteve support to the idea that cities exhibit
fractal patterns.

Diffusion Limited Aggregation

The earliest models of urban growth used aggregdtieory to reproduce some of the
emergent features of cities. Aggregation theorfyrsit glance provides an intuitive physical ba-
sis for the formation of cities, which are by nataggregations of people. The traditional model
of diffusion limited aggregation (DLA), first intduced by Witten and Sander [6], was invented
to model the aggregation of metal particles. Tholeh assumes a seed particle located at the
center of a 2-d square lattice. A second pariglatroduced at the boundary of the lattice and
walks randomly until it either visits a site adjatéo the seed or existing cluster, at which point
it becomes part of the cluster, or it walks offtloé lattice and is removed. The process is then
repeated one particle at a time. The processiffustn limited” because the growth of the
cluster is controlled by the introduction of randeralkers diffusing in from the boundary. Fig-
ure 2 shows an image of a simulated ag-
gregation.

A visual comparison of Figure 2 and
the sequence in Figure 1(d) shows
approximate qualitative agreement. Both
images show clusters branching out from
the CBD. However, the DLA is more
“dendritic” than the real city, which grows
more compactly. The tendency of the DLA
to grow long arms is the result of nascent ‘
dendrites shadowing other areas of the :
cluster and prohibiting the random walker
from reaching all parts of the cluster.

Batty and Longley have conducted
DLA simulations and have compared their_ o o
results with the city of Taunton, UK [5]. Figure 2. A diffusion limited aggregate.
Through different statistical analyses, thdrom[6].
authors conclude that Taunton has a fractal
dimension of 1.57, while the DLA simulation hasractal dimension of 1.66. Although the
fractal dimensions roughly agree, the model is sapact than the real city. The density of
Taunton is larger than that of the model; 26% efl#itice points in the effective area of Taunton
are occupied, but only 5% of the points in the @ffe area of the DLA simulation are occupied.

20 Lattice Constants
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A formal development of the DLA model suggests iay@ments. The growth process
should be governed by a diffusion equation sineepérticles are random walkers. The prob-
ability ¢(x,y,t)that a lattice site at positiofx,y Will be occupied at a time depends on the

occupation of its neighbors at the previous insiiamime. That is,

o(X, y,t):%(¢(x+dx,y,t—dt)+¢(x,y+dy,t—dt)+¢(x—dx,y,t—dt +¢ x,y—dyt—dt)).

Rearranging and adding zero to the equation werobta

(¢Ox+ b,y t=dt) = ¢(x, y,t = dt)) = (¢(x, y,t = dt) = ¢(x = dx, y,t = di))
+ (g%, y+dy,t=dt) - g(x, y,t = dt) = (x, y,t - dt) - @(x, y — dy,t ~ )
= 4@x, y,1) - @x, y,t —dt)).

The last equation is the discrete version of th@inaum diffusion equation as expected,
0,p=0%p.

Over a sufficiently long time scale, the flow ofrpeles is uniform, so we may assume that the
time derivative is constant. In that case, théudibn equation reduces to the inhomogeneous
Laplace equation. The boundary conditions for tHeAD
model are that the probability vanishes on thetelusince
each site can be only singly occupied, and that the
probability reaches unity at a set distance from ¢knter
where the particles are released. The problent,iasnow
stated, is equivalent to the dielectric breakdowndet
(DBM) [7], which models an electric discharge in a
dielectric medium. Figure 3 shows an image of sach
discharge. Note the similarity to the DLA simudatti

Now let us now denote the electric potential
by¢(x,y,t). We expect the probability that the discharge
will spread to a lattice point to depend on thealoglectric

Figure 3. Didlectric break- field. Thus,
downin SFs. From[7].
o From{7] pX,y,1) =

0,¢(X,y,1) +0,¢(x y.t)
2 0,4x Y. ) +9,¢x y,t)

Since only points neighboring the discharge can jgiand since the potential inside the dis-
charge vanishes,

¢(x, y,t)

p(X, y,t) =—Z Ay)’

Niemeyer et al. [7] suggest a generalization offtim



d(x y.t)

p(x,y.t) = 7
2 #(xy.t)

For n =1, the model reproduces DLA results. Fpr< th& model yields patterns with fractal
dimension near 2, or solid shapes. For> th& model yields patterns with a fractal dimension
near 1, like straight lines. Batty and Longley éased this modification of the DLA model to
produce other urban development simulations [5].

By way of conclusion, note first that the DLA mod#hnulates only one cluster at a time,
so that it cannot possibly reproduce Zipf's lawn @&dditional shortcoming of the DLA model is
that it predicts a power law variation of the degnaway from the CBD, but the data suggest an
exponential decay [4]. In addition, the DBM ajsovides an intuitive basis for thinking about
DLA simulations of urban development. In the DBifpowth occurs at the sites of highest po-
tential, which occur farthest away from the cemtethe cluster. If we think of the potential as
representing available space for growth, then veeishexpect growth to occur farthest from the
center of the cluster, as is the case in the DEMntrast this interpretation to the random walk-
ing of the particle in the DLA model, which nevercars in practice. Prospective city dwellers
examine their surroundings before choosing a plaeethey do not walk randomly in from in-
finity. The use of the Laplace or diffusion eqaatalso suggests that urban dwellers arrange
themselves to smooth out the population density.

Correlated Percolation

In order to simulate multiple urban clusters simnéously, some workers have used per-
colation theory to describe urban development [3, 14 brief, percolation theory considers the
problem of clusters on a 2-d lattice. Let us assansquare 2-d lattice with side length L with
sites indexed by=(i, j),i,] =1,...L . With each site we associate a numifey, which may be
random or not, and we define a concentratpsuch that ifu { X p the site is unoccupied, and
if u(r) > p the site is occupied. In uncorrelated percolatiogory, the site variables are as-

sumed uncorrelated, that(iﬁ(r)u(r ')> =Jf¢ ' ), where the brackets denote an average with re-

spect to a Gaussian distribution. Percolationthesks, what is the percolation threshqidat

which point a cluster of a certain size exists?

Motivated by the apparent long-range interactiomsomr@g city dwellers, Makse et al.,
have used correlated percolation theory (CPT) enpghesence of a concentration gradient as a
model for urban development [3, 4]. They arrangetiie sequence of lattice numbers to have

the long-range correlaticiw(r)w(r ')> Or + 'T“%. The procedure to create this correlation is
to convolve an original uncorrelated sequence aithower law kernel [10]. Consider a se-

quence of random number§), whose Fourier transform ﬁl$k) :jdru(r )e'™®" . We define a
new sequencév(k) =|k [*2 l](( )by multiplying the sequence in Fourier space (cdving in

real space) by a power law kernel. The correlafimttion of the new sequence is a power law
in distance:



<W(I’)W(r +R) <Id( ukk—a/Z |er‘ﬂ LKk) al2 g (+R)>

= [[ dkakk ~Tk orzgr k(R ><(J(< )UK )>

where
(utout)) =(Jd ut )™ [ u )+
= [[drde™e™” (ug Hul )
= [[drd'e™e® ¢ + )
=Idre"(k*)‘
=o(k k)
and

(wr)we +R)) = [[dckk <R orzerre f*R><u( ) )>
= [[dkakk 'k ~"Ze e R Igk K )
J'dk |k I— |k R
OR™

where d is the dimension of the lattice.
Since in reality the lattice is discrete, shortvelangth aliasing can spoil the intended
correlation. To avoid cutoff effects, the actuaimMgo law kernel used is slightly more compli-

cated [11]:
k a
K, (k
Fanle) 0

where K ; (k) is the modified Bessel function which assumes agudaw asymptotic form

fork <<1. For k >>1 the modified Bessel function decays exponentiagiding short wave-
length aliasing.

For the remainder of this discussion we shall negedr = o —d to be the correlation ex-
ponent. The case =0 represents the most strongly correlated case,ewhil « represents
the uncorrelated system. Makse et al. also matiéyusual percolation problem to include a
concentration gradient, thatpss pr g™, to account for the exponential decay of the dgnsi

with distance from the CBD [3, 4]. In their thedhe density gradient and correlation exponent
are the only tunable parameters. As might be drdeclusters become increasingly compact as

S(k) =




the correlation exponent diminishes. The

10* e - - - - . model yields the power law behavior of the
TR ] area distribution of clusters with an exponent
10 ,'1'_{:,',._ ] that depends on the correlation exponent as

L et ] shown in Figure 4. The authors reproduce the

—~ 10T 245L50eT0% 0 200 ] exponent of -2 in Zipf's law with a low

=z et correlation exponent or large actual
oo | . ‘*'Z::nk':... ] correlation. Visual inspection shows that the
[ ue0s ’-t,'L--:'. ] clusterg proo_luced resemble real ur‘ban mor-

10 | o ancomelated RSN ] phologies (Figure 5). The fractal dimension

i e el ] of the strongly correlated clusters produced is

0 & s i i iy d, 1.4 which roughly agrees with data mentioned

A above.

Figure 4. Cluster area distribution function The CPT model is an improvement
for different correlation exponents. From over the DLA model because it models

[3]. multiple clusters simultaneously, and as a
result, it faithfully reproduces more emergent

features of urban growth. One disadvantage ofaR& model is that the exponential decay of
the population density away form the center isglieit assumption, and is a tunable parame-
ter. In reality, the density profile is an emergproperty of urban growth; urban planners do not
conspire to create cities with exponential profiles
A complete model of urban growth should incor- SRR e
porate this feature as an emergent property T e ' 8 g,
However, the CPT model does account for:"
decentralization because the same correlatlon__ _ o
exponent when coupled with a realistic time - *.. s
varying density gradient successfully models the - =
time evolution of Berlin [3, 4]. T

Intermittency model TN
Although the CPT model represents an * L

improvement over DLA, the tunability of the den- -

sity gradient detracts from the completeness of

the theory. A new theory, called the mtermlttencyw .;;{: i

model (IM) [2,12,13] recovers nearly all of the ~#*¥33 _ :

emergent phenomena of urban development. The': 3 ,v., ;__*E

IM considers a 2-d square lattice. Each time step

consists of two events, a stochastic, or inEigure5. Left: Images of Berlln in 1875,

termittent, event in which a lattice site increase$920, and 1945. Right: CPT simulation.

or decreases its occupation by a fixed fractiorf;rom[3].

and a diffusion process which smoothes out the

population distribution. The motivation for thisodel assumes opposing forces of attraction and

repulsion in urban growth. Cities attract peopla, urban dwellers avoid places with the highest

population density. In addition, temporal intetenicy might be considered a natural part of a

theory of urban development because cities areahyre, spatially intermittent.



Formally, the model associates with each paint(i, j),i,j =1,...L on a 2-d lattice a
numbern(x,t) describing its occupation for each time step. Twocesses occur in each time
step. The first is an intermittent, or reactiorgqess, where

n(x,t) =&x,tn(x,t)
with t<t'<t+1, and

(1-q)p™ with probabilityp

X,t)=
$0e) {q(l— p)™ with probabilityq

where0< q,p<1. This reaction event conserves the total popaiasince

(n(x,t") =1_Tq p(n(x,t)}+ﬁ (1- p){n(x t )>-
=(n(x,t))

Even though the population is conserved, higher emdmof the population density diverge,
suggesting spatial intermittency.
After each reaction step, a diffusion process oganhich smoothes out the population

N t+1)= l-a Nt )+ 3 nE )
XT{x}

wherea is a control parameter describing how much of gbpulation leaves a given cell at
x and is distributed to the cells in its neighborhfpdd The model has not yet been solved ex-

actly, but a mean field approximation is instruetivif some fixed fraction of the average popu-
lation per siten, diffuses into each cell at a given time, then \&a write the entire model as

follows, setting the average population to unity,

(1-a)A-q)p™n(x,t) + a with probabilityp

n(x,t+1)= .
( ) {(l—a)q(l— p)'n(x,t) + a with probabilityg



In the limit asq - 0 anda < + p,

the populations develop inhomogeneities, as
In this limit, it can be
shown that the frequency of occurrence

expected for cities.

f (n) of a city with populatiom goes as
f(n)~n™*

with

z=1+Inp/In[p/Q-a)].

The exponent depends on both the diffusion
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and reaction constants. Had diffusion beegigure 6. Distribution of city areas and popula-
left out, the distribution would follow a |Og- tions in the IM for time varying parameters. The
normal form [2], in disagreement with ac-graight line has slope -2. Inset: the relation be-

tual cities.

tween population and are is shown with straight

The results of numerical simulations|jne of slope 1.From[3].

are impressive as the

theoretical

development foreshadows. Figure 6 displays the latipn and area distribution of the cities

from the simulations.

Note the excellent agreegmdth the straight line, which has slope -2.

Figure 7 shows the population density versus digtdrom city center. The profile is exponen-
tial, as expected. Figure 8 displays the fractalethsion of a typical cluster. Analysis of many
different clusters yields fractal dimensions betwdel5 and 1.35. Remarkably, if local, not
global diffusion takes place, the resulting expdaato not depend on the specific values of the

parametersr and pif they are within a particular range!

In fact ttveo parameters can vary

with time in their appropriate ranges during thawiation with no change in final results.
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Figure 7. Semi-log plot of population density as a
function of distance from CBD in IM cluster.

From[ 3]

The  intermittency  model
appears to recover nearly all of the
emergent phenomena in urban
developments described earlier.
Several comments are in order. First,
the IM appears not include any
interactions between lattice sites
besides local diffusion and the
conservation of population. Thus, at
first glance, the emergent phenomena
in cities may not be a result of inter-
actions beyond diffusion. Rather, this
model seems to suggest that emergent
behavior may depend only on col-

lective  patterns resulting  from
stochastic  fluctuations in large
populations.



Second, the simulated
clusters eventually die out as a result
of strong fluctuations in the system.
Corrective  measures in  the
simulation at each time step must be -
taken to ensure that small clusters
survive the effects of repeated _ AN
fluctuations. Although not enough Z 1 2
to tarnish the success of this model, 1 »
the vulnerability to extinction of Z \Q‘
clusters suggests that this model may - -

be lacking in some regard. .
Marsilli and Zhang [8] have
proposed another approach to the 1w e @

intermittency model. They suggest a m,r N

frqmework_ using a mast_er equa_t'on'Figure 8. Fractal dimension of a typical IM cluster.
GivenQ cities with m citizens in From [3]

3

1

the i" city, they define the rates of
growth and decrease bw,(m) and w,(m) respectively. Thei" city has probability

w,(m)dt of increasing its population by one person in aetinmtervalck .  Similarly,
w, (m)dt represents the probability that one person willagefhe city in that time interval. Ad-
ditionally, there is some probabilitpdt that a new city will form. The average numiagy, of
cities of sizemat timet obeys the equation

atqm,t = Wd (m+1)qm+1,t - Wd (m)qm,t + pdm,l
W, (m- 1)qm—1,t W, (m)qm t

Note that this equation does not conserve the nuoflqgeople or cities. If the transition rates
are linear inm, that isw, (n )= Am andw, (n)=Dm with A=(1-p)/n andD =1/n wheren

is the average number of people in all cities (edegharting citizen has a chance to make a new
city), then solving the master equation in the dyestate yields

G~
m

in contradiction to Zipf's law. Note that includjronly linear terms corresponds to assuming no
interactions between individuals. If we assumewiae interactions among the urban dwellers,

thenw m?, and

p @-p)" 1
0 -~
i 1-p nY

m2

10



in agreement with Zipf's law. Since the numbedepartures and arrivals in a city are propor-
tional ton, the fluctuationsdm in the population should depend linearlywn Note that the

intermittency model assumes exactly this: the ststib fluctuation in each time step is propor-
tional to the population. The assumption of indefsnt individuals, or arrivals and departures

proportional tom in the master equation, leads to fluctuationsrdeop/m , which is not in
agreement with the intermittency model. Althoulgl tM seems not to include interactions,
pairwise interactions may, in fact, account for sk@chastic fluctuations assumed in the IM.

Concluding remarks

The theories discussed here are all phenomenalogi/hile they faithfully reproduce
many of the emergent phenomena of cities, theydatkcroscopic explanation in terms of intui-
tive human interactions. Some workers have begutevelop microscopic theories of urban
development. Andersson et al. [9] have proposddikov random field model which extends
the theory of urban development beyond pairwiseraations to include realistic human interac-
tions.

One might wonder if theories of urban developnwentld contribute to urban planning.
Makse et al. [2] offer some relevant comments.Figare 1(b) shows, the scaling properties of
Berlin appear to have remained constant from 184 Yegardless of any enforced urban poli-
cies. London also passed a “green belt” policthan1930s aimed to protect areas of natural
land around the city. This policy was enforcedibeigpg in the 1950s. However, Figure 1(b)
again shows that the scaling properties of Lontol©i81 agree with apparently universal behav-
ior, suggesting that the green belt policy didditb determine the shape of the city. It seems
that only the degree and type of interaction behwats in the city, or the correlation exponent,
determines the scaling properties of the city molpdy.

In applying theories or urban development to pupblicy planning, we would do well to
heed the warnings of Kadanoff [14] that differerddals may lead to different and even contra-
dictory policy conclusions. Even as a theoretmatsuit, however, the study of urban growth
remains a fascinating example of emergent behavior.

References

[1] Zipf, George Kingsley.Human Behavior and the Principle of Least Effort. Cambridge, MA:
Addison Wesley Press Inc., 1949.

[2 ]S.C. Manrubia and D.H. Zanette, Phys. Re®B3F295 (1998).

[3] H. A. Makse et al., Phys. Rev.38, 7054 (1998).

[4] H. A. Makse et al., Naturg77, 608 (1995).

[5] Batty, Michael and Paul Longleyractal Cities. New York: Academic Press, 1994.
[6] T. A. Witten and L. M. Sander, Phys. Rev. Ldff, 1400 (1981).

[7] L. Niemeyer, L. Pietronero, and H. J. WiesmalRhys. Rev. Lettc2, 1033 (1984).

11



[8] M. Marsili and Y-C Zhang. Phys. Rev. Le0, 2741 (1998).

[9] C Andersson et al. Phys Rev &6, 026204 (2002).

[10] S. Prakash et al., Phys. Rev.4&, 1724 (1992).

[11] H. A. Makse et al. Phys. Rev. B3, 5445 (1996).

[12] D. H. Zanette and S. C. Manrubia, Phys. Reatt.[79, 53 (1997).
[13] S. C. Manrubia, D. H. Zanette, and R. V. Sélgctals7,1 (1999).

[14] Kadanoff, Leo.From Order to Chaos. Essays:. Critical, Chaotic, and Otherwise. River
Edge, New Jersey: World Scientific Publishing A®93.

12



