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Cities exhibit emergent properties.  For example, the distribution of the number of cities with 
respect to population is a power law across multiple spatial, temporal, and cultural scales.  Spe-
cific emergent phenomena of urban development are discussed.  Current theories of urban devel-
opment are described and evaluated with regard to how well they model emergent properties of 
urban growth.   
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Introduction 
Cities are emergent phenomena.  A city exists because of the strong interactions among 

humans and their resulting collective behavior.  Surprisingly, however, cities themselves exhibit 
emergent behavior.  For example, the distribution of cities with respect to population is a power 
across multiple spatial, temporal, and cultural scales.  Physicists know this type of emergence 
within emergence from the study of vortex states, for example, but the study of urban growth 
provides a new and non-technical example of emergent behavior. 

Emergence in urban growth demonstrates that different microscopic theories can give rise 
to the same macroscopic physics.  A successful microscopic theory of urban development taking 
into account human interactions is a daunting many-body problem.  As in superconductivity, re-
searchers have put forth phenomenological theories first.  Even though the different theories of 
urban growth are vastly different, they reproduce the same emergent behavior. 

From an intellectual perspective, the problem of urban growth is interesting because it 
maps onto different areas of physics.  The first models of urban growth borrowed from theories 
of aggregation.  The aggregation model, it turns out, is the same as the problem of electric dis-
charge and dielectric breakdown.  The dielectric breakdown model yields additional insight into 
the mechanisms responsible for urban growth.  Subsequent models have used percolation theory, 
stochastic models, and phenomenological differential equations.  The study of urban growth may 
seem at first glance a mundane problem, but deeper investigation unearths interesting and subtle 
physical problems.  In the next section I discuss in more precise terms the emergent properties of 
urban development.  Then I describe and evaluate a few current models of urban growth.   

  
Emergence in Urban Growth 
 In Human Behavior and the Principle of Least Effort, George Kingsley Zipf argues on 
the basis of the economy of effort that the distribution of the number cities with respect to popu-
lation ought to follow power law behavior [1].   It does, in fact, and the power law description is 
so exact and apparently universal that it has come to be known as Zipf’s law.  Figure 1(a) shows 
that the population distribution of the 2700 largest cities in the world, the 2400 largest cities in 
the US, the 1300 largest municipalities in Switzerland, and the 10 largest countries in south 
Europe all exhibit the same power law behavior with exponent -2.  These data show that cities 
conform to Zipf’s law through nearly 5 decades in size and in various cultural settings [2].  The 
same power law holds for the distribution of cities as a function of area and in different years [3] 
as shown in Figure 1(b). Note that in the London and Berlin data, the data represent small towns 
that comprise the larger cities, not actual independent large cities.  Remarkably, Zipf’s law de-
scribes the distributions of countries, municipalities, cities in different countries, cities in the 
same country, and towns in the same city in different years.  In each of these cases, the exponent 
is always -2.   
 Cities also typically display a population density profile that decays exponentially with 
distance from the city center, or central business district (CBD) [4].  Over time, the density gra-
dient diminishes, corresponding to the phenomenon of decentralization as in Figure 1(c).   
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Figure 1.  (a) Population frequency for the 2700 largest 
world cities, 2400 largest cities in the US, 1300 largest 
municipalities in Switzerland, 10 largest countries in 
south Europe.  The straight lines have slope -2.  From 
[2]. (b) Area distribution for towns in London and Ber-
lin.  From [3]. (c) Population density gradient in Berlin 
over time.  From [3].  (d) Images of Berlin in 1875, 
1920, and 1945.  From [4], said the girl with kaleido-
scope eyes. 

 
 
 



 3 

 
Figure 2.  A diffusion limited aggregate.  
From [6]. 

 Urban developments also exhibit fractal properties. Theories of urban development usu-
ally consider a 2-d square lattice, where each lattice site may be occupied or unoccupied.  If the 
number of occupied lattice sites enclosed by a circle of radius R from the CBD scales as 
 

αrrN ∝)( , 
 
and α is not an integer, then α is the fractal dimension of the pattern and describes how the area 
of the pattern scales with its linear size.  Equivalently, the fractal dimension of a pattern de-
scribes the dimensionality of its boundary.  A line with dimension larger than unity fills more 
space than a straight line.   The fractal dimensions of most cities lie between 1.6 and 1.8 [5]. The 
successive images of Berlin in Figure 1(d) lend qualitative support to the idea that cities exhibit 
fractal patterns.   
 
Diffusion Limited Aggregation 

The earliest models of urban growth used aggregation theory to reproduce some of the 
emergent features of cities.  Aggregation theory at first glance provides an intuitive physical ba-
sis for the formation of cities, which are by nature aggregations of people.  The traditional model 
of diffusion limited aggregation (DLA), first introduced by Witten and Sander [6], was invented 
to model the aggregation of metal particles.  The model assumes a seed particle located at the 
center of a 2-d square lattice.  A second particle is introduced at the boundary of the lattice and 
walks randomly until it either visits a site adjacent to the seed or existing cluster, at which point 
it becomes part of the cluster, or it walks off of the lattice and is removed.  The process is then 
repeated one particle at a time.  The process is “diffusion limited” because the growth of the 
cluster is controlled by the introduction of random walkers diffusing in from the boundary.  Fig-
ure 2 shows an image of a simulated ag-
gregation.   

A visual comparison of Figure 2 and 
the sequence in Figure 1(d) shows 
approximate qualitative agreement.  Both 
images show clusters branching out from 
the CBD.   However, the DLA is more 
“dendritic” than the real city, which grows 
more compactly.  The tendency of the DLA 
to grow long arms is the result of nascent 
dendrites shadowing other areas of the 
cluster and prohibiting the random walker 
from reaching all parts of the cluster.   

Batty and Longley have conducted 
DLA simulations and have compared their 
results with the city of Taunton, UK [5].  
Through different statistical analyses, the 
authors conclude that Taunton has a fractal 
dimension of 1.57, while the DLA simulation has a fractal dimension of 1.66.   Although the 
fractal dimensions roughly agree, the model is less compact than the real city.  The density of 
Taunton is larger than that of the model; 26% of the lattice points in the effective area of Taunton 
are occupied, but only 5% of the points in the effective area of the DLA simulation are occupied.   
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Figure 3.   Dielectric break-
down in SF6.  From [7]. 

A formal development of the DLA model suggests improvements.  The growth process 
should be governed by a diffusion equation since the particles are random walkers.  The prob-
ability ),,( tyxφ that a lattice site at position ),( yx  will be occupied at a time t  depends on the 
occupation of its neighbors at the previous instant in time.  That is,  

 
1

( , , ) ( ( , , ) ( , , ) ( , , ) ( , , ))
4

x y t x dx y t dt x y dy t dt x dx y t dt x y dy t dtϕ ϕ ϕ ϕ ϕ= + − + + − + − − + − − . 

Rearranging and adding zero to the equation we obtain 
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The last equation is the discrete version of the continuum diffusion equation as expected, 
 

φφ 2∇=∂ t . 

 
Over a sufficiently long time scale, the flow of particles is uniform, so we may assume that the 
time derivative is constant.  In that case, the diffusion equation reduces to the inhomogeneous 

Laplace equation. The boundary conditions for the DLA 
model are that the probability vanishes on the cluster since 
each site can be only singly occupied, and that the 
probability reaches unity at a set distance from the center 
where the particles are released.  The problem, as it is now 
stated, is equivalent to the dielectric breakdown model 
(DBM) [7], which models an electric discharge in a 
dielectric medium.  Figure 3 shows an image of such a 
discharge.  Note the similarity to the DLA simulation.   

Now let us now denote the electric potential 
by ),,( tyxφ .  We expect the probability that the discharge 
will spread to a lattice point to depend on the local electric 
field.  Thus, 

∑ ∂+∂
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Since only points neighboring the discharge can join it, and since the potential inside the dis-
charge vanishes, 
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Niemeyer et al. [7] suggest a generalization of the form  
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For 1=η , the model reproduces DLA results.  For 1<<η  the model yields patterns with fractal 
dimension near 2, or solid shapes.  For 1>>η  the model yields patterns with a fractal dimension 
near 1, like straight lines.  Batty and Longley have used this modification of the DLA model to 
produce other urban development simulations [5].    

By way of conclusion, note first that the DLA model simulates only one cluster at a time, 
so that it cannot possibly reproduce Zipf’s law.  An additional shortcoming of the DLA model is 
that it predicts a power law variation of the density away from the CBD, but the data suggest an 
exponential decay [4].   In addition, the DBM also provides an intuitive basis for thinking about 
DLA simulations of urban development.  In the DBM, growth occurs at the sites of highest po-
tential, which occur farthest away from the center of the cluster.  If we think of the potential as 
representing available space for growth, then we should expect growth to occur farthest from the 
center of the cluster, as is the case in the DBM.  Contrast this interpretation to the random walk-
ing of the particle in the DLA model, which never occurs in practice.  Prospective city dwellers 
examine their surroundings before choosing a place, but they do not walk randomly in from in-
finity.   The use of the Laplace or diffusion equation also suggests that urban dwellers arrange 
themselves to smooth out the population density. 
 
Correlated Percolation 
 In order to simulate multiple urban clusters simultaneously, some workers have used per-
colation theory to describe urban development [3, 4].  In brief, percolation theory considers the 
problem of clusters on a 2-d lattice.  Let us assume a square 2-d lattice with side length L with 
sites indexed by ( , ), , 1,...,i j i j L= =r .  With each site we associate a number( )u r , which may be 
random or not, and we define a concentration p such that if ( )u p<r  the site is unoccupied, and 
if ( )u p>r  the site is occupied.  In uncorrelated percolation theory, the site variables are as-

sumed uncorrelated, that is( ) ( ') ( )u u δ= −r r r r' , where the brackets denote an average with re-

spect to a Gaussian distribution.  Percolation theory asks, what is the percolation threshold cp at 

which point a cluster of a certain size exists?    
Motivated by the apparent long-range interactions among city dwellers, Makse et al., 

have used correlated percolation theory (CPT) in the presence of a concentration gradient as a 
model for urban development [3, 4].  They arrange for the sequence of lattice numbers to have 
the long-range correlation ( )( ) ( ') | ' | dw w α− −∝ −r r r r .   The procedure to create this correlation is 

to convolve an original uncorrelated sequence with a power law kernel [10].   Consider a se-

quence of random numbers( )u r , whose Fourier transform is
~

( ) ( ) iu d u e−= ∫
k rk r r i .  We define a 

new sequence 
~ ~

/ 2( ) | | ( )w uα−=k k k by multiplying the sequence in Fourier space (convolving in 
real space) by a power law kernel.  The correlation function of the new sequence is a power law 
in distance: 
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where d is the dimension of the lattice.   
 Since in reality the lattice is discrete, short wavelength aliasing can spoil the intended 
correlation. To avoid cutoff effects, the actual power law kernel used is slightly more compli-
cated [11]: 
 

 
2

( ) ( )
( 1) 2

k
S K k

α

α
π

α
 =  Γ +  

k  

 
where ( )K kβ is the modified Bessel function which assumes a power law asymptotic form 

for 1k << .  For 1k >>  the modified Bessel function decays exponentially, avoiding short wave-
length aliasing. 

For the remainder of this discussion we shall redefine dα α≡ − to be the correlation ex-
ponent. The case 0α =  represents the most strongly correlated case, while α → ∞  represents 
the uncorrelated system.  Makse et al. also modify the usual percolation problem to include a 
concentration gradient, that is ( ) rp p e λ−= =r , to account for the exponential decay of the density 
with distance from the CBD [3, 4].  In their theory the density gradient and correlation exponent 
are the only tunable parameters.  As might be expected, clusters become increasingly compact as 
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Figure 5.  Left: Images of Berlin in 1875, 
1920, and 1945.  Right: CPT simulation.  
From [3]. 

 
Figure 4. Cluster area distribution function 
for different correlation exponents.  From 
[3]. 

the correlation exponent diminishes.  The 
model yields the power law behavior of the 
area distribution of clusters with an exponent 
that depends on the correlation exponent as 
shown in Figure 4.  The authors reproduce the 
exponent of -2 in Zipf’s law with a low 
correlation exponent or large actual 
correlation.  Visual inspection shows that the 
clusters produced resemble real urban mor-
phologies (Figure 5).  The fractal dimension 
of the strongly correlated clusters produced is 
1.4 which roughly agrees with data mentioned 
above. 
 The CPT model is an improvement 
over the DLA model because it models 
multiple clusters simultaneously, and as a 
result, it faithfully reproduces more emergent 

features of urban growth.  One disadvantage of the CPT model is that the exponential decay of 
the population density away form the center is an explicit assumption, and λ is a tunable parame-
ter.  In reality, the density profile is an emergent property of urban growth; urban planners do not 
conspire to create cities with exponential profiles.  
A complete model of urban growth should incor-
porate this feature as an emergent property.  
However, the CPT model does account for 
decentralization because the same correlation 
exponent when coupled with a realistic time 
varying density gradient successfully models the 
time evolution of Berlin [3, 4]. 
 
Intermittency model  
 Although the CPT model represents an 
improvement over DLA, the tunability of the den-
sity gradient detracts from the completeness of 
the theory.  A new theory, called the intermittency 
model (IM) [2,12,13] recovers nearly all of the 
emergent phenomena of urban development.  The 
IM considers a 2-d square lattice. Each time step 
consists of two events, a stochastic, or in-
termittent, event in which a lattice site increases 
or decreases its occupation by a fixed fraction, 
and a diffusion process which smoothes out the 
population distribution.  The motivation for this model assumes opposing forces of attraction and 
repulsion in urban growth.  Cities attract people, but urban dwellers avoid places with the highest 
population density.  In addition, temporal intermittency might be considered a natural part of a 
theory of urban development because cities are, by nature, spatially intermittent. 
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 Formally, the model associates with each point ( , ), , 1,...,i j i j L= =x  on a 2-d lattice a 
number ( , )n tx describing its occupation for each time step.  Two processes occur in each time 
step.  The first is an intermittent, or reaction, process, where 
 

( , ') ( , ) ( , )n t t n tξ=x x x  
 
with ' 1t t t< < + , and  
 

1

1

(1 )  with probability 
( , )

(1 )  with probability 

q p p
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q p q
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−

−

 −
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where0 , 1q p≤ ≤ .  This reaction event conserves the total population, since 
 

1
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1
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q q
n t p n t p n t

p p
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−

=

x x x

x
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Even though the population is conserved, higher moments of the population density diverge, 
suggesting spatial intermittency. 
 After each reaction step, a diffusion process occurs, which smoothes out the population 
 

{ }

( , 1) (1 ) ( , ') ( , ')n t n t n t
k

αα
∈

+ = − + ∑
x' x

x x x'  

 
where α  is a control parameter describing how much of the population leaves a given cell at 
x and is distributed to the cells in its neighborhood{ }x .  The model has not yet been solved ex-
actly, but a mean field approximation is instructive.  If some fixed fraction of the average popu-
lation per site 0n  diffuses into each cell at a given time, then we can write the entire model as 

follows, setting the average population to unity, 
 

1

1

(1 )(1 ) ( , )   with probability 
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Figure 6. Distribution of city areas and popula-
tions in the IM for time varying parameters.  The 
straight line has slope -2.  Inset: the relation be-
tween population and are is shown with straight 
line of slope 1.From [3].   

Figure 7.  Semi-log plot of population density as a 
function of distance from CBD in IM cluster.  
From[3] 

 In the limit as 0q →  and 1 pα < − , 
the populations develop inhomogeneities, as 
expected for cities.  In this limit, it can be 
shown that the frequency of occurrence 

( )f n of a city with population n  goes as  
 

( ) zf n n−
∼  

 
with  
 

1 ln / ln[ /(1 )]z p p α= + − . 
 
The exponent depends on both the diffusion 
and reaction constants.  Had diffusion been 
left out, the distribution would follow a log-
normal form [2], in disagreement with ac-
tual cities.   
 The results of numerical simulations 
are impressive as the theoretical 
development foreshadows. Figure 6 displays the population and area distribution of the cities 
from the simulations.   Note the excellent agreement with the straight line, which has slope -2.  
Figure 7 shows the population density versus distance from city center.  The profile is exponen-
tial, as expected.  Figure 8 displays the fractal dimension of a typical cluster.  Analysis of many 
different clusters yields fractal dimensions between 1.15 and 1.35.  Remarkably, if local, not 
global diffusion takes place, the resulting exponents do not depend on the specific values of the 
parameters α  and p if they are within a particular range!  In fact the two parameters can vary 
with time in their appropriate ranges during the simulation with no change in final results. 

 The intermittency model 
appears to recover nearly all of the 
emergent phenomena in urban 
developments described earlier.   
Several comments are in order.  First, 
the IM appears not include any 
interactions between lattice sites 
besides local diffusion and the 
conservation of population.   Thus, at 
first glance, the emergent phenomena 
in cities may not be a result of inter-
actions beyond diffusion.  Rather, this 
model seems to suggest that emergent 
behavior may depend only on col-
lective patterns resulting from 
stochastic fluctuations in large 
populations.   
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Figure 8.  Fractal dimension of a typical IM  cluster.  
From [3]. 

Second, the simulated 
clusters eventually die out as a result 
of strong fluctuations in the system.  
Corrective measures in the 
simulation at each time step must be 
taken to ensure that small clusters 
survive the effects of repeated 
fluctuations.  Although not enough 
to tarnish the success of this model, 
the vulnerability to extinction of 
clusters suggests that this model may 
be lacking in some regard. 
 Marsilli and Zhang [8] have 
proposed another approach to the 
intermittency model.  They suggest a 
framework using a master equation.  
Given Q  cities with im  citizens in 

the thi city, they define the rates of 
growth and decrease by ( )a iw m  and ( )d iw m respectively.  The thi city has probability 

( )a iw m dt of increasing its population by one person in a time intervaldt .  Similarly, 

( )d iw m dt represents the probability that one person will depart the city in that time interval.  Ad-

ditionally, there is some probability pdt that a new city will form.  The average number ,m tq of 

cities of size m at time t  obeys the equation 
 

  
, 1, , ,1

1, ,

( 1) ( )

( 1) ( )
t m t d m t d m t m

a m t a m t

q w m q w m q p

w m q w m q

δ+

−

∂ = + − +
+ − −

. 

  
Note that this equation does not conserve the number of people or cities.  If the transition rates 
are linear in m , that is ( )aw m Am=  and ( )dw m Dm=  with (1 ) /A p n= −  and 1/D n=  where n  

is the average number of people in all cities (each departing citizen has a chance to make a new 
city), then solving the master equation in the steady state yields 
 

 
1 pm

mq e
m

−
∼  

 
in contradiction to Zipf’s law.  Note that including only linear terms corresponds to assuming no 
interactions between individuals.  If we assume pairwise interactions among the urban dwellers, 
then 2w m∝ , and  
 

 
2 2

(1 ) 1

1

m

m

p p
q

p m m

−∝
−

∼  
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in agreement with Zipf’s law.  Since the number of departures and arrivals in a city are propor-
tional to 2m , the fluctuations dm  in the population should depend linearly on m .  Note that the 
intermittency model assumes exactly this: the stochastic fluctuation in each time step is propor-
tional to the population.  The assumption of independent individuals, or arrivals and departures 

proportional to m  in the master equation, leads to fluctuations of order m , which is not in 
agreement with the intermittency model.  Although the IM seems not to include interactions, 
pairwise interactions may, in fact, account for the stochastic fluctuations assumed in the IM. 
 
Concluding remarks 
 The theories discussed here are all phenomenological.   While they faithfully reproduce 
many of the emergent phenomena of cities, they lack a microscopic explanation in terms of intui-
tive human interactions.  Some workers have begun to develop microscopic theories of urban 
development.  Andersson et al. [9] have proposed a Markov random field model which extends 
the theory of urban development beyond pairwise interactions to include realistic human interac-
tions. 
 One might wonder if theories of urban development could contribute to urban planning.  
Makse et al. [2] offer some relevant comments.  As Figure 1(b) shows, the scaling properties of 
Berlin appear to have remained constant from 1875-1945 regardless of any enforced urban poli-
cies.  London also passed a “green belt” policy in the 1930s aimed to protect areas of natural 
land around the city.  This policy was enforced beginning in the 1950s.  However, Figure 1(b) 
again shows that the scaling properties of London in 1981 agree with apparently universal behav-
ior, suggesting that the green belt policy did little to determine the shape of the city.  It seems 
that only the degree and type of interaction between units in the city, or the correlation exponent, 
determines the scaling properties of the city morphology. 
 In applying theories or urban development to public policy planning, we would do well to 
heed the warnings of Kadanoff [14] that different models may lead to different and even contra-
dictory policy conclusions.  Even as a theoretical pursuit, however, the study of urban growth 
remains a fascinating example of emergent behavior. 
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