
Oscillons formed by granular matter

Matthias W. Gempel

19. December 2008
University of Illinois at Urbana Champaign

Department of Physics

This text shortly reviews the emergence of oscillons in a layer of vibrated granular matter. First the
discovery of oscillons by Umbanhowar, Melo and Swinney is reported. Second several methodically
different approaches for the explanations of oscillons are given: The first and the last model approach
oscillons from granular matter’s properties, whereas the second model choses a more general per-
spective, using order parameter equations, respectively a Swift Hohenberg type of model. Finally the
main reasons for the emergence of oscillons are outlined.
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1 Discovery of Oscillons

Granular matter is widely found in our surround-
ings. Sand might only be the most popular exam-
ple, but industrial sequences are also full of gran-
ulates. Therefore it has long been the aim of sci-
entists to find rules for the behaviour of granular
matter.

Looking form very far the particles in granu-
lar matter appear very small and one could be
attempted to consider the whole as a continuous
fluid. In some cases this seems to be not a too
bad assumption, but the granular particles show
another sort of interaction than molecules in flu-
ids. What can be viewed as the common problem
of scaling, which is observed in many fields. For
example it is known from experience that a pile of
sand does not simply flatten, like a liquid would
do - at least not completely, when there is no ex-
ternal perturbation causing the sand to flow.

A common experiment to gain information
about granular matter is to investigate a layer of it
on a vibrating, horizontal plate. In 1996 Umban-
howar et al. published a paper on such a system
describing a very interesting feature which they
called oscillon. These oscillons are axial symmet-
ric localized structures on the otherwise flat gran-
ular layer (Figure 1). They oscillate with half the
frequency of the vibrating plate f̃ = f /2. Where
f = ω

2π
= f rac1T is the frequency of the verti-

cally vibrating plate.[1] During one cycle of the
plate an oscillon is a crater, in the next the granu-
late forms a peak and than becomes a crater again.
That is why oscillons are called subharmonic or
double period features. The crater state shows a
rim slightly higher than the surrounding flat layer,

the peak state is encircled by a slight depression.
Several oscillons, which do not have to be in

the same state, were observed to coexist at the
same time. So peaks and craters can be seen on
the layer together. But these different states are
always half a phase apart in their evolution. This
can be observed as the states, peak and crater,
switch at the same time. As already implied in
oscillons being a period doubled phenomena os-
cillons switch their state during every cycle of the
vibrating layer. Surprisingly those oscillons are a
highly stable phenomena and usually last for sev-
eral 105 cycles of the plate[1].

Figure 1: Oscillons of granular matter: b) top
view of crater; c) top view of peak; d)
side view of crater; e) side view of peak
(From Umbanhowar et al. [1])

In their experiments Umbanhowar et al. used
the following setup. A horizontal plate covered
with a thin layer of granular matter was vibrated
vertically in an upright evacuated cylinder. Oscil-
lons were reported when the thickness of the layer
was at least 14 monolayers of material, but it is
not clear whether this is just due to the specific
experimental setup. The vertical position of the
plate can be described by z = Asin(2π f t) where
t denotes time. Therefore, when using the same
granulate for all experiments, A and f are the
only external parameters which can be changed.
For further discussion f is kept but instead of
just A the dimensionless acceleration amplitude
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1 DISCOVERY OF OSCILLONS

Γ = A4π2 f 2/g, with the gravitational constant g,
is introduced[1]. It can be seen that this param-
eter is coupled to f but can still be varied inde-
pendently. This choice is common in literature
and seems more general, convenient as well as
appropriate than A because it directly relates to
the force exerted on the granular matter, but this
choice does not really change anything.

As shown in Figure 2 different patterns occur
on the layer of granular matter for different points
in the parameter space spanned by f and Γ.

Figure 2: Different phases of a granular matter
layer on a horizontal vibrating plate:
Oscillons are found in the region be-
tween the flat layer and square or stripe
patterns. (From Umbanhowar et al. [1])

A broader description of those patterns, which
does not contain oscillons jet, can be found in an
earlier publication of this group [2]. This text will
focus on oscillons.

Oscillons are observed for a acceleration am-
plitude of 2.4 . Γ . 2.5 and a driving frequency
in the range of 18Hz . f . 35Hz. From the val-
ues for Γ it can be seen that oscillons only ap-
pear far in the region were the layer takes off the
plate when going up and hence collides with the
plate on its way down. So during every plate cy-
cle there is a time of free flight for the granular
matter involved. The frequency region in which
oscillons occur is coincident with the frequency
region in which square patterns fade to stripe pat-
terns an vice versa. But the Γ values for oscillons
are below the barrier above which standing wave

patterns like squares and stripes are stable. Below
the lower Γ barrier for oscillons only the flat layer
is stable and no patterns are observed.[1]

When approaching the oscillon region starting
from a totally flat layer by keeping f constant and
increasing Γ it turns out that the flat layer is also
stable in the region where oscillons can occur.
Only when the flat layer is perturbed oscillons can
emerge. The other possibility to obtain oscillons
is to approach the oscillon parameter region from
a patterned state. Then the pattern will destabilize
an oscillons will break away form it. That is one
of the reasons why there is the idea that patterns at
least in the transition region to oscillons, could be
viewed as made up of oscillions[1]. The stability
of a flat layer in the oscillon region of parame-
ter space as well as the fact that when observing
an oscillon the rest of the granular layer can be
perfectly flat allow it to draw the following con-
clusion: The region in which oscillons occur is
a hysteretic bifurcation region, as this allows that
both, oscillons and flat layer, coexist at the same
time. It is noted that the hysteresis decreases with
increasing f and oscillons only occur when hys-
teresis is a decreasing function of frequency[1].
In other words the transition from the flat layer,
respectively the flat layer with oscillons, to the
parameter region where square patterns fade to
stripe patterns and vice versa is of subcritical bi-
furcation type.

When the parameter region in which oscillons
are stable is left, those either decay in 5 to 10 cy-
cles to flat layer or they fade to another pattern.
This transition to other patterns and the emer-
gence of oscillons from patterns usually go over
bound states of opposite phased oscillons. Those
bound states made of opposite phased oscillons
are stable. Umbanhowar et al. observed dipole
like and triangular structures as well as oscillon
chains. Some examples are shown in Figure 3.[1]

As a rule of thumb one can say that the interac-
tion range of oscillons in smaller than one of their
diameters and that opposite phased oscillons at-
tract each other whereas like phased oscillons re-
pel. The coordination number of an oscillon was
always found to be smaller than four.

It was further found that the central frequency
of the oscillon parameter region is proportional to
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2.1 Cerda et al. 2 MODELS FOR OSCILLONS

Figure 3: Some examples of bound oscillons: a,b)
Dipoles; c,d) chains; e,f) triangular state
with one oscillon in the middle and op-
posite phased oscillons surrounding it;
g) bound oscillons break away from
square pattern during transition due to
parameter change (From Umbanhowar
et al. [1])

d−1/2 where d denotes the diameter of the gran-
ular matter used for the experiment. The kinetic
energy normalized by the energy that is needed
to lift a particle by one diameter is v2/(gd). v
is the relative velocity to neighbouring particles
Now assuming that Γ is constant and v is the max-
imal velocity of the plate the authors conclude
that formation of oscillons in vibrated granular
matter not only needs a high hysteresis but also
high dissipation.[1] Hence this would till now be
the two factors necessary for the occurrence of os-
cillons. What causes the emergence and stability
and what the localization of oscillons needs fur-
ther considerations.

2 Models for oscillons

Localized structures in dissipative fluid systems
were investigated before oscillons, e.g. with the
result that a coupling between the amplitude and
frequency of wave phenomena in such systems
can cause localization[4], the pinning of an in-
terface to a periodic microscopic structure would
also have the effect of localization[5]. In general
nonlinear Fields were searched for stable local-
ized solutions[6]. So it was relatively well known

what could make structures localized and stable,
at least all the models used had had on thing in
common: A subcritical instability.

After oscillons were reported by Umbanhowar
et al. different approaches were used to explain
this phenomena. Some of them explicitly consid-
ering properties of granular matter[3][7][8]. Oth-
ers using fully macroscopic or phenomenologi-
cal models that include just a few basic char-
acteristics which the behaviour of the system
exhibits[9][10][11][12][13].

In the following three different of the many ap-
proaches to model oscillons will be introduced.

2.1 Cerda et al.

The first model introduced here was developed by
Cerda, Melo and Riga. The model’s idea is to sep-
arate the vibration cycle into tow different phases:
The first phase is the one of free flight, it gives
the major contribution to the lateral movement of
granular particles. The horizontal relaxation of
the layer thickness takes place during the second
phase, when the layer collides with the plate.

The description of the lateral movement is im-
plemented with the following equation which also
accounts for mass conservation.

h
(
x, t f

)
= h(x,0)

+
∫

dr [W (r → x)h(x,0)

−W (x→ r)h(x,0)

(1)

It simply implies the lateral movement with the
function W (r → x). This is the probability that
a column of sand moves from r to x during the
first phase. Hence this equation accounts for the
interaction of x with its environment in the laziest
way, namely just by what one is interested - the
lateral movement. In the simplest form W can be
described by a δ function,

W (r → x) = Cδ
{

x−
[
r + t f v(r,0)

]}
with v being the two dimensional horizontal ve-
locity of the sand column following the relation:

v(x, t) =−v0∇h(x,0)

t f is the time during which the lateral movement
takes place. x denotes the horizontal spatial vari-
able in two dimensions.
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2.1 Cerda et al. 2 MODELS FOR OSCILLONS

The thickness relaxation can than be described
by a simple diffusion equation.

∂th(x, t) = D∇
2h(x, t) (2)

Before examining the model regarding linear
stability a closer look on the equations 1 and 2 can
already provide some understanding about what
the model will tell. The diffusion equation 2 alone
would kill every perturbation, so instabilities have
to be promoted by the lateral movement given by
1. On the other hand 2 is the only possibility in
the model to pick the most unstable mode, respec-
tively wavelength.

A linear stability analysis in h(x, t) = h0 +
ξ (x, t) of this system gives the following results:
The amplitude of the perturbing mode k grows
each cycle by a factor that is basically σ (k) ≈(
1− ...k2)e...k2

. Therefore it can be seen that a
flat perturbation would be stable and there can
just be one most unstable wavelength λ . It can
further be concluded the phase of the perturba-
tion changes by π each cycle. Those facts sound
already very oscillon like.

The onset of the most unstable mode for Γ =
Ch0v0t f /D

(
T − t f

)
can than be determined for

Γ = 3.6. By determining the diffusion coefficient
to D = v0ι (d +δ ) with an unknown function ι

the particle diameter d and the layer dilation δ ,
it turns out that λ = ι (d +δ ) v0t f

Γ
. Unluckily this

relation is difficult to check in experiment as it is
hard to estimate δ .

To finally investigate the nonlinear regime nu-
merical simulations were done, implemented ac-
cording to the basic idea of the model with a free
flight and a collision phase. It turned out that for
low Γ values the flat layer is stable and in ac-
cordance to linear stability analysis gets unstable
for Γ values greater than 3.6. Which is not re-
ally agreeing with the experiment, but this should
also not be expected as the model is not very de-
tailed. A square pattern could be observed in the
simulations, but in contrast to the experiment the
transition to this pattern is supercritical.

To obtain a subcritical transition like observed
in the experiment an internal friction angle is in-
troduced. In cases where the surface slope of the
granular layer is smaller than this angle, the lat-
eral motion of the granulate does not happen. And

indeed after considering the internal friction angle
subharmonic oscillon like features could be ob-
served in numerical simulations (Figure 4). This
is a hint that dissipation plays an important role in
making the transition subcritical and hence also
for the existence of oscillons.

Figure 4: Simulations: Top(Γ = 5, C = 1): left:
Stable square pattern, right: Metastable
squares coexisting with flat layer in
subcritical region; Bottom(Γ = 8, C =
0.77): Subharmonic features in subcrit-
ical region. (From Cerda et al. [7])

For C values near unity these oscillon are re-
ported to be unstable, but for decreasing C and
increasing f , keeping Γ constant they start to be-
come stable. Sadly the paper does not state how
the oscillon like features are obtained in the sim-
ulation. Whether an extra simulation was done or
they emerge form the metastable square pattern
state by separation like it was observed in the ex-
periment (Figure 3 g))

Fact is the model obtains oscillon like features.
It seems that dissipation plays an important role
for the existence of oscillons. But does not be-
come really clear why we see oscillons in exactly
this parameter region, the model can just tell that
they are there. The Γ dependence is at least a little
bit illuminated. Because without a phase of free
flight dissipation always overweights the possibil-
ities of the driving force. Only when the granu-
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2.2 Aranson et al. 2 MODELS FOR OSCILLONS

lar layer recollides with the plate the forces on it
are high enough to promote perturbations. On the
other hand this means that dissipation stabilizes
already existing structures, like the pile of sand
mentioned in the introduction, so maybe also os-
cillons.

2.2 Aranson et al.

A further possibility to model the system, fol-
lowed by Aranson and Tsimring, is an order pa-
rameter equation. This equation is a borrowing
form equations used in fluid mechanics and de-
signed based on phenomenological properties of
the experiment. To take equations which are sim-
ilar to those in fluid dynamics is distinct, as men-
tioned above granular matter is in some sense
similar to a continuous fluid. Here the order
parameter ψ denotes the complex amplitude of
oscillations with the subharmonic frequency f̃ .
ρ(x, t) is the local averaged area density of the
granular matter layer, so in principle its function
is similar to that of h in the model before.

∂tψ = γψ− (1− iω)ψ +(1+ ib)∇
2
ψ

−|ψ|2 ψ−ρψ
(3)

This equation is mainly constructed in a way that
it exhibits all the features that lead to oscillons
how they were observed in the experiment. For
example it is important that the equation is invari-
ant under ψ →−ψ , so that peaks and craters are
equivalent. Which is according to [12] a result
of the discrete time symmetry of the system. The
first term on the left hand side shall promote the
excitation of standing waves from perturbations.
The following two terms are determined from the
dispersion relation of driven granular waves. The
nonlinearity is there to cause the saturation of so-
lutions and the last term gives the coupling to the
density ρ . A second equation accounts for mass
conservation in the system. The second term on
the left hand side is the regular diffusion equa-
tion term, whereas the fist term is introduced as
particle tend to leave regions with higher density
fluctuations drifting to more calm areas.

∂tρ = α∇

(
ρ∇ |ψ|2

)
+β∇

2
ρ (4)

Obviously ψ = 0 and ρ = ρ0 = const, in
other words a flat layer, is a trivial solution
for this system. This solution becomes unsta-
ble to a perturbation with wavelength λ in lin-
ear order, in two different cases: For ω̃b >
1 + ρ0 the flat layer becomes unstable at γ2

c =
(ω̃ +b(1+ρ0))

2 /
(
1+b2). For ω̃b < 1 + ρ0

λ → ∞ first gets unstable at γ2
c = 1+ρ + ω̃2.[10]

For certain parameter configuration localized
axial symmetric structures, like shown in figure 5,
were found. Those can be supposed to correspond
to oscillons, when comparing the radial profile for
ρ form figure 6 to pictures obtained from experi-
ment.

Figure 5: Phase diagram calculated by Tsimring
et al.: Black dots indicate the region
in which stable oscillons were observed
in numerical calculations. (From Tsim-
ring et al. [9])

Further linear stability analysis, based on ax-
ial symmetric perturbations, shows that those os-
cillons are, like observed in the experiment, sta-
ble for in the region of subcritical transition from
the flat layer to square states. So the γ values
for which oscillons are stable have to fulfil the
following relation: γc1 < γ < γc2 < γc. At the
boundaries of this parameter region the unstabi-
lized structures begin to annihilate with others of
their kind.

To investigate the behaviour of oscillons out-
side of the linear regime Aranson et al. apply, like
Cerda et al., numerical simulations. In those nu-

6



2.3 Rothman 2 MODELS FOR OSCILLONS

Figure 6: Radial distribution of oscillon in a crater
state: (From Aranson et al. [10])

merical simulations even the interactions between
oscillons could be modelled in a qualitative cor-
rect way. Dipoles are found, as well as triangular
structures but no structures with a coordination
number of higher than four. This is certainly a
hint that the model discussed here does not only
model the emergence of oscillons pretty well but
goes way further. Note that also square patterns
and so called roles can be described by this model.
The model also tells that like phased oscillons
could bind, too. But those binding strengths are
in the order of "‘granular noise"’ and hence sig-
nificantly weaker than bounds between opposite
phased oscillons. This is also the reason why
they are not observed in experiment. But those at-
tractive interaction between like phased oscillons
are also predicted by other models, for example
in [12]. But this is not really surprising, as this
model follows similar ideas than the one of Aran-
son et al.

In the numerical simulations it is found that as
soon as γ goes below γc1 oscillons decay very fast
to the flat layer. For γ increasing above γc2 it
depends on the value of α/β µ , where µ is the
overall average mass density, what happens. For
small values, that means when the diffusion more
important than the particle movement due to den-
sity fluctuations, rolls form. Those may then fade
to a non ordered square pattern. For high values,
hence when particle movement manly depends on

local density differences the already existing os-
cillons nucleate more oscillons at their boundaries
and form chains, exactly like it was observed in
the experiment. Note that this basically means
that the correct behaviour is obtained when den-
sity differences throughout the layer play an im-
portant role for the system.

This strengthens the idea that stable patterns
form or are made up of oscillons. Which was al-
ready addressed by Umbanhowar et al. [1]. They
had supported suggestion by adding a subhar-
monic frequency to the driving force of the plate.
As a result the region which was formerly the
transition region between squares and stripes was
then filled by a hexagonal pattern, which turned
into a hexagonal lattice of like phased oscillons
when decreasing Γ. This process can be seen in
figure 7.

Figure 7: The transition from a hexagonal pattern
to a oscillon lattice while reducing Γ in
a system the has a additional subhar-
monic driving frequency of the plate.
(From Umbanhowar et al. [1])

The advantages of this model is certainly the
simplicity that nevertheless leads to the emer-
gence of oscillons. It does not consider any par-
ticular microscopic properties of granular matter
but captures the phenomenological details good
enough to make predictions. This means that it
can model the emergence of oscillons, or granu-
lar matter in general. But it will not give inside in
what is special about granular matter that oscil-
lons can emerge. It just models the system from
what can be macroscopically observed.

2.3 Rothman

The model introduced by Rothman starts with the
idea to view granular matter as an amount of non
elastic colliding spheres which are viscously cou-
pled. Then space is made continuous and locally
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averaged, while time stays time like we know
from everyday life not like in Swift Hohenberg
approaches. This leads to the following equa-
tions:

∂
2
t h = ν∇

2
∂th−g+B

(
h, ḣ,z, ż,α

)
(5)

Were ν denotes the viscosity and B is a function
which describes the bouncing of the layer dur-
ing layer plate collisions, h(x, t) is again the layer
height and z the position of the plate. When as-
suming the bouncing to be a linear process than B
is defined by

ḣ→ ż+α
(
ż− ḣ

)
Where α (ρ) is a measure how good the layer
adopts the velocity of the plate. It monotoni-
cally decreasing with the area density of the layer
ρ (x, t). The time evolution of ρ is described by a
similar diffusion equation as in Aranson’s model.

∂tρ = D
(
∇

2
ρ−∇ρ∇h/h0

)
(6)

Those equations were numerically solved on a
square lattice, assuming α to be some stepwise
defined decreasing function[8].

To simplify comparison with the experiment a
characteristic frequency f0 and grain size were in-
troduced in terms of D and ν . Then taking the
grain size and frequency f0 ≈ 25Hz used in the
experiment, reasonable D and ν were determined.
Simulations were started far from the stable flat
state, but with constant ρ to enable pattern for-
mation. Oscillons can be found as final solutions.
Rothman notes that during the formation of the
pattern the fluctuations in h result in fluctuations
in ρ , so that regions of high α can emerge. This
is a good explanation for the fact that oscillons
switches between crater and peak state every cy-
cle. When there is a crater at a certain spot α is
high, as a result the layer there will bounce high
and the region is then filled due to the second term
in equation 6.[8]

From figure 8 this double period evolution of
the oscillon can be seen in a nice way. And
also the excitation of the oscillon is shown very
clearly.

Several simulations at different points in pa-
rameter space lead to the phase diagram shown

Figure 8: Evolution of ρ and h inside (solid line)
and outside (dashed line) a oscillon.
(Dot-dashed line: Evolution of z) (From
Rothman [8])

in figure 9. From this diagram it becomes evident
that the model fits the experiments pretty good,
as the Γ as well as the frequency region match
the experimental results fairly well. The really
good Γ values are obtained because of the right
choice of α ≈ 0.2. So the experimental layer is
like expected pretty non bouncing, compared to
a flummy for example. Instead of a square pat-
tern this model obtains stripes but otherwise the
qualitative properties of the phase diagram fit the
experiment as well as the quantitative.

The radius of the oscillons, and hence also the
wavelength of the most unstable mode in this pa-
rameter region, can only depend on sqrt(D/ f ), as
this is the length scale determining the mean trav-
elling length of a particle during on plate cycle.[8]

Further insight about the region in which oscil-
lons can be found comes from equation 6. The
density fluctuations inside an oscillon should for
example scale as

∆ρi

ρ0
∝

D
a2 f

∝
f0

f

This means, keeping Γ constant, when f exceeds
a critical value the density fluctuation in the oscil-
lon become to small to keep it alive and it decays
to a flat layer. On the other side, when f becomes
to small oscillons should fade to stripes. This can
be explained assuming that oscillons have similar
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Figure 9: Phase diagram determined by simula-
tions. (From Rothman [8])

shapes. Then the difference between the density
fluctuation inside the oscillon and outside the os-
cillon at points each the distance l away form the
oscillon border scale for small l like:

∆ρi−∆ρo

ρ0
∝

l
R

∝

√
a2 f
D

∝

√
f
f0

This means that for small enough f the oscil-
lon starts to nucleate other oscillons outside its
boundaries. This is the mechanism observed
for the fade form oscillons to patterns in the
experiment.[8]

This model also makes it plausible that oppo-
site phased oscillons form bound states and do not
annihilate. All what happens is that the state with
the lower α shuffles matter into the region with
the higher α and vice versa.

3 Conclusion

Already before the discovery of oscillons sev-
eral ideas had been present to account for their
basic features{Th88. It might have been more
the need to include oscillons in the whole pic-
ture of vibrated granular matter which caused so
many publications in the following time. Es-
pecially phenomenological approaches do this
pretty well. Therefore the discovery of oscillons

should have improved the general models exist-
ing for vibrated granular matter Especially phe-
nomenological models, should have become more
accurate, premising that those have already been
on the right track.

Anyway the big question at the end is again
what causes the emergence of oscillons or to put
it in a more precise way: We know how they look
like, why do they do so, why do they exist and
why do they exist in this parameter region. I think
that these are difficult questions to answer.

Several people state that hysteresis, respec-
tively a subcritical transition from the flat layer
to square patterns is necessary[12]. But, as os-
cillons appear in a region were the flat layer is
stable when there is no perturbation and oscillons
coexist with the flat layer, this is already evident
from the experiment[1] one does not need a model
to see this. Further this fact is necessary but that
does not mean that it is sufficient. It also seems
that the term subcritical does not really provide an
explanation, in the common sense, because what
causes the subcriticallity?

One expects that there is a promising possibil-
ity to dig deeper and understand granular mat-
ter at a scale of the size of its particles. There-
fore models exceeding an phenomenological or-
der parameter approach are needed. As men-
tioned above it turns out that those model are
really good in the respect of describing nature.
But they are missing the relation to the micro-
scopic physical properties of granular matter. The
best that can be done in this type of models is
to draw parallels to already existing fluid models
like e.g. Swift Hohenberg approaches and mod-
ify them according to observations made in the
experiments.

It would be nice to have a link between already
existing attempts[7][7] to describe granular mat-
ter from a microscopic point of view and also ex-
isting order parameter equations[10][12]. At the
moment it only can be said, that simulations based
on properties of granular matter tend to provide
a deeper insight in the fundamental properties of
granular matter, even though they do not provide
analytical solutions.

From Rothman’s and Cerda’s papers it can for
example be concluded that indeed dissipation is a
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main reason for the existence of oscillons, prob-
ably because of its stabilizing properties. Cerda
et al. further outline why it is so important to
have a phase of free flight in order to promote
perturbations in the layer. This need for the free
flight with a certain strength of layer plate colli-
sion afterwards sets up the lower Γ boundary for
the oscillon region. Rothman further tries to ex-
plain what the reason for the oscillons’ frequency
region could be: For to high frequencies the tem-
poral density fluctuations in the oscillon become
to small what results in a fast decay of the os-
cillon. Whereas when the frequency becomes to
low the oscillon starts to drive its neighbourhood
so that larger patterns emerge.

Finally it should have become clear that gran-
ular matter, respectively oscillons are not as good
understood as one might wish to have it. To cre-
ate a fully satisfying model a lot of more research
will be needed.
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