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Abstract: 
 
Spontaneous symmetry breaking can result in emergence of complicated patterns in 
nature. Simple symmetry arguments can be used to describe beautiful and periodic 
rippled and wavy edges of flowers and leaves as well as fractal structure at the edge of a 
torn plastic sheet. In this paper, I will first discuss simple physical and geometrical 
arguments based on symmetry breaking and metrics on a curved surface that result in this 
pattern formation. Next, I will provide results of some theoretical and simulation studies 
of wrinkled pattern formation in plastic sheets and leaves.   
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I    Introduction: 
 
Spontaneous symmetry breaking (SSB) beautifully describes order and pattern 
emergence in condensed matter physics. Emergence of magnetization in ferromagnets 
below the Curie temperature and appearance of Goldstone bosons in models with 
spontaneous broken symmetry are among them. The 2008 Nobel Prize in physics went to 
3 physicists for their work on spontaneous symmetry breaking in subatomic physics. In 
contrast to these rather abstract examples, SSB has been widely used to describe pattern 
formation in some more familiar phenomena. In fluid systems, SSB manifest itself in 
formation of stripes, spirals and waves as stable patterns and can be driven by buoyancy, 
surface tension or temperature. Another important example of SSB is spontaneous pattern 
formation in a reaction-diffusion system [1]. This is interesting because it has been 
argued that this process maybe related to pattern formation on animal coat and skin. As 
we see, SSB is widely used to describe emergence of order and pattern formation at very 
different levels from ferromagnets to complex patterns on an animal coat. In this paper I 
study another application of SSB to describe formation of complex and symmetric 
patterns in a wide class of leaves and flowers. As I will discuss, we do not necessary need 
a complex genetic code to instruct each piece of a leaf to adopt a specific shape. In fact a 
symmetric uniform growth rate, with a higher rate at the margins, can generate wavy and 
rippled patterns. I will also discuss several experiments and computer simulation that 
support this hypothesis. 
 
 
 
 

      
 

Figure 1: Complex wavy pattern along the edge of an orchid (left) 
and an ornamental cabbage (right). An enhanced, uniform growth 
rate along the edge can generate such patters (from [2]). 

 
 
 



 3 

II     Buckling and Spontaneous Symmetry Breaking (SSB) 
 
As discussed in the introduction, SSB can be used to describe complex pattern emergence 
from simple equations. SSB happens when stable solutions of an equation posse less 
symmetry than the equations themselves. As a simple example, if we press inward on a 
uniform, long plastic strip (like a ruler), the plastic strip and the force are symmetric in 
horizontal direction. Now by increasing the force, under this symmetric tension, ruler has 
two choices: either to shrink, like a spring, or to bend up or down. Simple experiments 
have shown the plastic strip will buckle eventually. In fact, the equations describing the 
elasticity of thin sheets are called Föbbl-von Karman equations. In these equations, 
stretching energy is linearly dependent on thickness (t) while bending energy is cubic in t 
[4]. So, as the sheet become thinner and thinner, stretching becomes more expensive 
energetically compared to bending. Therefore in a plastic sheet with a thickness of a few 
hundred microns, we expect to see immediate buckling under compression without a 
change in its length. As buckling sets in, since there is no factor to favor up or down 
direction, symmetry will break spontaneously and system will eventually buckle either up 
or down. In case of a plastic sheet, buckling is reversible and upon removal of the force, 
the object will snap back to its original equilibrium symmetric configuration.  

Now, in another experiment, if we make a small cut in a thin plastic sheet like a 
wrapping sheet or a garbage bag, and tear it apart along the cut we end up with an edge 
which is curled up and down and highly structured (figure 2).  
 
 

 
 

Figure 2: Wavy edge of a torn plastic sheet (from 2) 
 

The equilibrium shape of the sheet consists of a cascade of waves upon waves 
along the edge. It turns out that even if the experiment is done in a controlled manner and 
with a uniform speed, the final shape of the sheet is the same. Figure 3 shows the newly 
formed edge at different levels of magnification. As it is seen, the images are self similar 
with a scaling factor of 3.2. This self similarity suggests that the edge can be considered 
as a fractal [2, 9]. Now the question is how uniform deformations on a flat surface can 
result in emergence of such a complex structure.  
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Figure 3: Successive magnification of the edge of the thin plastic sheet 
(thickness 0.012 mm). Each step is magnified 3.2 times with respect to the 
previous one (from 2). 

 
A close look at the edge of the sheet, while being torn, shows that as the plastic is ripped, 
it stretches close to the edge (red line in figure 4) while remains uniform away from it 
(purple line in figure 4).  
 

 
 

Figure 4: The distance between points along the direction of the tear changes 
irreversibly. This change is not uniform and is higher closer to the edge. 

 
If the sheet were to remain flat after this irreversible deformation, it would have to 
rearrange all pieces of it by expanding or shrinking across the sheet. However, it is 
energetically more favorable for it to buckle along the edge and as it buckles up and 
down, it spontaneously breaks the symmetry in the vertical direction.  
 
 
 
III     Formal Description 
 
From the mathematical point of view, having a non-uniform elongation throughout the 
sheet is equivalent to defining a new target metric on the surface. For the configuration 
shown in figure 4, the component of the metric along x-direction (g) will change and it 
will be a function of y ( ( )ygg = ). Employing Gauss’ Theorema Egregium which relates 
the Gaussian curvature (K) to derivatives of the metric through the following equation [5] 

x 
y 
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21−=  we see that if g is a convex function of y, then K<0. This means that 

every point on the surface is a saddle-like point and in order to adopt this configuration, 
the sheet must buckle out of the plane spontaneously. Sharon and his collaborators did a 
series of systematic experiments to find the dependence of the wavelength of waves on 
the local properties of the sheet [6]. The two local length scales that enter are the local 
thickness t(y) and the geometrical local length scale ( )yLgeo . This geometrical length 

scale is the inverse geodesic curvature along y=constant lines. The authors measured 
( )yLgeo  by cutting narrow strips parallel to the torn edge of the sheet and flattening them 

between glass coverslips. The strip curls up into a ring whose radius is ( )yLgeo  (figure 5). 

 

              
Figure 5: The process of measuring ( )yLgeo . (b) Narrow strips of plastic is 

being cut, (c) and confined between glass plates. Radius of the formed rings is 
the local intrinsic curvature. (d) Normalized wavelength as a function of 
normalized geometric length scale collapse into a line with slope equal to 0.7 

which implies ( ) ( ) ( )yLyty geo
7.03.0=λ . Each symbol is from a sheet with 

different thickness (from 6). 
 

As it is shown in figure 5d, their experiments suggest that ( ) ( ) ( )yLyty geo
7.03.0=λ . Also, as 

figure 5c shows, geoL decreases as 0→y  which means the wavelength becomes shorter 

and shorter as we approach the edge. Also from the scaling behavior it is seen that if the 
sheet has a thickness that approaches zero, it will buckle and wrinkle everywhere along 
its edge which as well predicts the observation of fractal as we discussed earlier. 
 Marder et al [7, 8] and Sharon et al [9] presented simple discrete energy 

functional as 

2

2

2 ∑ ∑ 







∆∆−=

ij
ijijij gu

a αβ

β
αβ

ακε  which upon minimization would give the 

shape of the surface. Hereκ is energy per volume, a is a characteristic length, ij∆ is the 
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equilibrium distance between lattice points i and j and jiij uuu
�� −=  is the distance 

between points when they are not in equilibrium. g is the metric tensor that they guessed 
and used in their algorithm. They tested this approach for a wide thin strip under 
compression, and observed a satisfactory agreement between the simulation and 
experiment result. Figure 6 shows summary of their result for 3 different metric tensors 
for metric along with the result of experiments on plastic sheets and beet leaves.  
 

 
 

Figure 6: (a) Measured metric for a 200 micron thick plastic sheet 
(squares) is compared with three different trial metrics: 
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minimizing the given functional for three given metrics. (c) 
Comparing profile of simulated sheet and experiments on plastic sheet 
and natural leaf. 

 
 
IV     Patterns in Leaves and Flowers 
 
Apparent similarities between the edge of a torn plastic sheet and a wavy edge of a leaf 
inspired Sharon and co-workers to look into this problem more carefully. Earlier, in a 
series of experiments, Nath et al [6] demonstrated that precise controlling of growth rate 
throughout the leaf can control the overall shape of it. Therefore, interrupting the natural 
genetic pattern by over expressing or silencing certain genes can produce leaves with 
different morphological parameters. However their experiments did not differentiate the 
role of genetic coding and geometrical properties in shaping the leaf. In other words, does 
the leaf need to be programmed at each point to buckle up or down? To address this 
question, Sharon et al [2] did a simple experiment. Their motivation was to study the 
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effect of a uniform metric change close to the leaf edge on the leaf shape. In order to do 
that, they applied growth regulating plant hormone auxin along the edge of eggplant 
leaves which are naturally smooth and flat. After a few days of treatment, they observed 
waviness appeared along the edges of the leaves (figure 6). 
 

     
 

Figure 7: Growth hormone auxin is applied along the edge of a flat 
eggplant leaf. After 10 days of treatment, waves have emerged and they 
increase in amplitude later.  

 
Sharon et al [5] did more experiments to test their hypothesis about similarity between 
pattern at the edge of a leaf and a torn plastic sheet and whether leaf waviness is a result 
of uniform change of metric along the leaf edge. To do so, they did the same 
measurement as they did on torn plastic sheets, discussed in figure 5, on natural leaves. In 
fact they saw that in a leaf with wavy edge, the radius of strips decrease as the edge is 
approached (figure 7a, b). Using this information, they could perform quantitative 
measurement of the metric on the leaf as a function of distance from the leaf edge (figure 
7c). Repeated experiments on many different leaves all produced a linear metric for the 
flat part and a convex metric for the wavy part of the leaf.  

The authors tried to generalize their findings and use this geometrical picture to 
describe formation of more complex patterns in flowers. They performed some 
experiments and computer simulations to study emergence of pattern in cylinders as a 
result of non-uniform growth toward the end [2]. Their idea was that if a cylinder grows 
toward one end, at some point it will break the cylindrical symmetry and buckle. They 
tested their hypothesis by doing experiment on tubes made of polyacrylamid gel which 
swells in water but shrinks in acetone. So, by inserting the tube in acetone and then 
dipping the end into water they can create a non-uniform but axially symmetric metric 
that results in a trumpet shape observed in figure 8a and simulations (figure 8b). 
Moreover, by making the acetone to water transition happen on a shorter distance and 
therefore making the metric changing steeply, they could break the cylindrical symmetry 
spontaneously and form a wavy edge (figure 8c). By choosing the right target metric on a 
cylinder, this result was observed in computer simulations as well [2, 7].   
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Figure 8: Intrinsic geometry of leaf studied for flat and wavy leaves with the same 
method discussed in figure 5. As it is seen, as leaf edge is approached( )0→y , 

geoL  (radius of curvature of thin strips) (a) for a flat leaf and (b) decreases for a 

wavy leaf. (c) Metric function for a wavy Wisteria leaf (circles) compared to a flat 
leaf with the same contour length (solid line) (from 5).  

 
 
 

               
 

Figure 9: Experimental (a, c) and computer simulation (b, d) results for cylinders with 
a non-uniform growth at the edge. Buckling resulted in emergence of wavy edges. 

 
 
Now this mechanism can be used to describe the formation of complex crown of the 
daffodil or narcissus flowers as a consequence of constant, uniform and symmetric 
growth of flower tissue (figure 9). 

(c) 
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Figure 10: Formation of beautiful and complex crown of daffodil and 
narcissus flowers can be attributed to a uniform and symmetric growth of the 
tissue which has then buckled and spontaneously broken the symmetry (from 
2). 

 
 
V Discussion and Conclusion 
 
In this paper I discussed formation of a wavy pattern observed in experiments on thin 
plastic sheets as a result of spontaneous symmetry breaking and buckling. Then I 
discussed how change of the target metric can be the mechanism behind this pattern 
formation and provided results of systematic experiments and computer simulations to 
verify this hypothesis. I then showed how this same mechanism can result in formation of 
complex patterns is leaves and flowers as well. In other words, trees and flowers don not 
necessarily need a complex and detailed genetic code to form a pattern. In fact, as it is 
shown here, simple geometry and physics arguments can describe formation of naturally 
occurring complex structures. 
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