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Abstract:

Spontaneous symmetry breaking can result in emeegeh complicated patterns in
nature. Simple symmetry arguments can be used s$oride beautiful and periodic
rippled and wavy edges of flowers and leaves as agelractal structure at the edge of a
torn plastic sheet. In this paper, | will first diss simple physical and geometrical
arguments based on symmetry breaking and metriescomved surface that result in this
pattern formation. Next, | will provide results edme theoretical and simulation studies
of wrinkled pattern formation in plastic sheets &aves.



| Introduction:

Spontaneous symmetry breaking (SSB) beautifully cdess order and pattern
emergence in condensed matter physics. Emergenogagietization in ferromagnets
below the Curie temperature and appearance of €olesbosons in models with
spontaneous broken symmetry are among them. TH& 20Bel Prize in physics went to
3 physicists for their work on spontaneous symmbteaking in subatomic physics. In
contrast to these rather abstract examples, SSBdwswidely used to describe pattern
formation in some more familiar phenomena. In flsigbtems, SSB manifest itself in
formation of stripes, spirals and waves as stabteeps and can be driven by buoyancy,
surface tension or temperature. Another importaatrgle of SSB is spontaneous pattern
formation in a reaction-diffusion system [1]. Thi interesting because it has been
argued that this process maybe related to patgmattion on animal coat and skin. As
we see, SSB is widely used to describe emergenoadef and pattern formation at very
different levels from ferromagnets to complex patseon an animal coat. In this paper |
study another application of SSB to describe foiomatof complex and symmetric
patterns in a wide class of leaves and flowersl. Wil discuss, we do not necessary need
a complex genetic code to instruct each pieceleéfito adopt a specific shape. In fact a
symmetric uniform growth rate, with a higher ratéhee margins, can generate wavy and
rippled patterns. | will also discuss several ekpents and computer simulation that
support this hypothesis.

Figure 1. Complex wavy pattern along the edge obmhid (left)
and an ornamental cabbage (right). An enhancedprumigrowth
rate along the edge can generate such patters [2{pm



[l Buckling and Spontaneous Symmetry Breaking (SSB)

As discussed in the introduction, SSB can be uselds$cribe complex pattern emergence
from simple equations. SSB happens when stabldisotuof an equation posse less
symmetry than the equations themselves. As a siexaenple, if we press inward on a
uniform, long plastic strip (like a ruler), the pta strip and the force are symmetric in
horizontal direction. Now by increasing the foraader this symmetric tension, ruler has
two choices: either to shrink, like a spring, orbend up or down. Simple experiments
have shown the plastic strip will buckle eventualty fact, the equations describing the
elasticity of thin sheets are called Fobbl-von Kanmequations. In these equations,
stretching energy is linearly dependent on thickn€&swhile bending energy is cubic in t
[4]. So, as the sheet become thinner and thinnexiching becomes more expensive
energetically compared to bending. Therefore imastig sheet with a thickness of a few
hundred microns, we expect to see immediate bugllinder compression without a
change in its length. As buckling sets in, sincerghis no factor to favor up or down
direction, symmetry will break spontaneously anstem will eventually buckle either up
or down. In case of a plastic sheet, buckling \&rsible and upon removal of the force,
the object will snap back to its original equililom symmetric configuration.

Now, in another experiment, if we make a smallioua thin plastic sheet like a
wrapping sheet or a garbage bag, and tear it aparg the cut we end up with an edge
which is curled up and down and highly structuriegl¢e 2).

Figure 2: Wavy edge of a torn plastic sheet (frgm 2

The equilibrium shape of the sheet consists ofszade of waves upon waves
along the edge. It turns out that even if the expent is done in a controlled manner and
with a uniform speed, the final shape of the sieeéte same. Figure 3 shows the newly
formed edge at different levels of magnificatiors iAis seen, the images are self similar
with a scaling factor of 3.2. This self similarguggests that the edge can be considered
as a fractal [2, 9]. Now the question is how umiodeformations on a flat surface can
result in emergence of such a complex structure.



TTTeepwipios

Figure 3: Successive magnification of the edgehef thin plastic sheet
(thickness 0.012 mm). Each step is magnified 3n2¢i with respect to the
previous one (from 2).

A close look at the edge of the sheet, while b&img, shows that as the plastic is ripped,
it stretches close to the edge (red line in figdiyavhile remains uniform away from it
(purple line in figure 4).

distance from the edge (y)

Figure 4: The distance between points along thection of the tear changes
irreversibly. This change is not uniform and isi@gcloser to the edge.

If the sheet were to remain flat after this irresiele deformation, it would have to
rearrange all pieces of it by expanding or shrigkatross the sheet. However, it is
energetically more favorable for it to buckle alothg edge and as it buckles up and
down, it spontaneously breaks the symmetry in #récal direction.

[11 Formal Description

From the mathematical point of view, having a noifarm elongation throughout the
sheet is equivalent to defining a new target mairnidhe surface. For the configuration
shown in figure 4, the component of the metric glardirection (g) will change and it
will be a function of y g = g(y)). Employing Gauss’ Theorema Egregium which relates

the Gaussian curvature (K) to derivatives of thériméhrough the following equation [5]
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K(y) = —l%g we see that if g is a convex function of y, therOKThis means that
g ay

every point on the surface is a saddle-like poitt en order to adopt this configuration,
the sheet must buckle out of the plane spontangoBkhron and his collaborators did a
series of systematic experiments to find the depecel of the wavelength of waves on
the local properties of the sheet [6]. The two Ideagth scales that enter are the local
thickness t(y) and the geometrical local Iengthleslc&o(y). This geometrical length

scale is the inverse geodesic curvature along staoh lines. The authors measured
L geo (y) by cutting narrow strips parallel to the torn eddgé¢he sheet and flattening them

between glass coverslips. The strip curls up inia@whose radius is,, (y) (figure 5).
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Figure 5: The process of measuring(y). (b) Narrow strips of plastic is

being cut, (c) and confined between glass platadil® of the formed rings is
the local intrinsic curvature. (d) Normalized waugyth as a function of
normalized geometric length scale collapse intme Wwith slope equal to 0.7

which impliesi(y) =t(y)*L% (y). Each symbol is from a sheet with
different thickness (from 6).
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As it is shown in figure 5d, their experiments sestgthat(y) = t(y) L (y). Also, as
figure 5¢ showsL ., decreases ag — O which means the wavelength becomes shorter

and shorter as we approach the edge. Also fronsdaking behavior it is seen that if the
sheet has a thickness that approaches zero, ibuckle and wrinkle everywhere along
its edge which as well predicts the observatiofraxftal as we discussed earlier.

Marder et al [7, 8] and Sharoret al [9] presented simple discrete energy

2
functional asgzziz{uf —ZA‘; gaﬂAﬁ} which upon minimization would give the
a) ap

shape of the surface. Herés energy per volume, a is a characteristic lengthis the



equilibrium distance between lattice points i andnd u; =[i, ~G;| is the distance

between points when they are not in equilibriuns the metric tensor that they guessed
and used in their algorithm. They tested this apghofor a wide thin strip under
compression, and observed a satisfactory agreerbetween the simulation and
experiment result. Figure 6 shows summary of thesult for 3 different metric tensors
for metric along with the result of experimentspdastic sheets and beet leaves.
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Figure 6: (a) Measured metric for a 200 micron khptastic sheet
(squares) is compared with three different trial trios:

(D gu(y)= (“ e_;j L@ g.(y)= [1+ O.?e_% + O.3e_¢y"j and

2
(3)gxx(y):(1+23 ) (b) Emergent patterns as a result of
y
minimizing the given functional for three given mes. (c)
Comparing profile of simulated sheet and experiment plastic sheet
and natural leaf.

IV Patternsin Leavesand Flowers

Apparent similarities between the edge of a toasit sheet and a wavy edge of a leaf
inspired Sharon and co-workers to look into thishhbem more carefully. Earlier, in a
series of experiments, Naghal [6] demonstrated that precise controlling of growdte
throughout the leaf can control the overall shapi. dherefore, interrupting the natural
genetic pattern by over expressing or silencingagergenes can produce leaves with
different morphological parameters. However thegperiments did not differentiate the
role of genetic coding and geometrical propertieshiaping the leaf. In other words, does
the leaf need to be programmed at each point t&l®ug or down? To address this
guestion, Sharoet al [2] did a simple experiment. Their motivation wasstudy the



effect of a uniform metric change close to the kedde on the leaf shape. In order to do
that, they applied growth regulating plant horme@nin along the edge of eggplant
leaves which are naturally smooth and flat. Aftédew days of treatment, they observed
waviness appeared along the edges of the leagesdf6).
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Figure 7: Growth hormone auxin is applied along #duge of a flat
eggplant leaf. After 10 days of treatment, wavegehamerged and they
increase in amplitude later.

after 14 days

Sharonet al [5] did more experiments to test their hypothegigut similarity between
pattern at the edge of a leaf and a torn plaseetshnd whether leaf waviness is a result
of uniform change of metric along the leaf edge. do so, they did the same
measurement as they did on torn plastic sheetsysisd in figure 5, on natural leaves. In
fact they saw that in a leaf with wavy edge, tha@iua of strips decrease as the edge is
approached (figure 7a, b). Using this informatidhey could perform quantitative
measurement of the metric on the leaf as a fundiatistance from the leaf edge (figure
7c¢). Repeated experiments on many different leallgzroduced a linear metric for the
flat part and a convex metric for the wavy partha leaf.

The authors tried to generalize their findings asd this geometrical picture to
describe formation of more complex patterns in #osv They performed some
experiments and computer simulations to study eemsg of pattern in cylinders as a
result of non-uniform growth toward the end [2].eTthidea was that if a cylinder grows
toward one end, at some point it will break theirfdical symmetry and buckle. They
tested their hypothesis by doing experiment ongubade of polyacrylamid gel which
swells in water but shrinks in acetone. So, by risg the tube in acetone and then
dipping the end into water they can create a nafoum but axially symmetric metric
that results in a trumpet shape observed in fig@eand simulations (figure 8b).
Moreover, by making the acetone to water transitiappen on a shorter distance and
therefore making the metric changing steeply, tt@yld break the cylindrical symmetry
spontaneously and form a wavy edge (figure 8c)clByosing the right target metric on a
cylinder, this result was observed in computer $atnens as well [2, 7].
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Figure 8: Intrinsic geometry of leaf studied fatfand wavy leaves with the same
method discussed in figure 5. As it is seen, acddge is approachégl - 0),
Ly (radius of curvature of thin strips) (a) for atfleaf and (b) decreases for a
wavy leaf. (c) Metric function for a wavy Wisteli@af (circles) compared to a flat
leaf with the same contour length (solid line) (r&).

Figure 9: Experimental (a, ¢) and computer simatatb, d) results for cylinders with
a non-uniform growth at the edge. Buckling resultedmergence of wavy edges.

Now this mechanism can be used to describe theatowm of complex crown of the
daffodil or narcissus flowers as a consequence ooistant, uniform and symmetric

growth of flower tissue (figure 9).



Figure 10: Formation of beautiful and complex crowh daffodil and
narcissus flowers can be attributed to a uniformh symmetric growth of the

tissue which has then buckled and spontaneouskehrthe symmetry (from
2).

V Discussion and Conclusion

In this paper | discussed formation of a wavy patt@bserved in experiments on thin
plastic sheets as a result of spontaneous symnteegking and buckling. Then |

discussed how change of the target metric can bentbachanism behind this pattern
formation and provided results of systematic experits and computer simulations to
verify this hypothesis. | then showed how this sameehanism can result in formation of
complex patterns is leaves and flowers as welbtler words, trees and flowers don not
necessarily need a complex and detailed genetie tmdorm a pattern. In fact, as it is

shown here, simple geometry and physics argumemslescribe formation of naturally
occurring complex structures.
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