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Abstract

I briefly reviewed vortex properties and its formation in ultra-cold Fermi gases. For
the problem of vortex structure, I focused on mechanisms of density depletion in the
vortex core, which is relevant to experiment.

Introduction

Ultra-cold atomic gases provide us excellent physics systems in which we could study many-
body physics in a controllable way, thanks to the extraordinary progress made by atomic
physicists. In the case of Fermi gases, by tunning interactions among atoms experimentally,
we can get systems from BEC limit all the way to BCS limit continuously. Studying this
BEC-BCS crossover can shed light on many areas of interest to us, such as high temperature
superconductivity.

Superfluidity is one of the most important properties in the ultra-cold Fermi gases. Pres-
ence of vortices is the most unambiguous evidence for superfluidity. However, unlike Bose
gases, which show significant density depletion in the vortex core; the Fermi gases are not
expected to show such density variations, at least in the BCS limit. This makes it challenging
to detect vortices in Fermi gases directly in experiment. There’s been theoretical work (for
example, [1, 2, 3, 4]) indicating appreciable density depletion in vortex cores in the strong
coupling regime which may be experimentally detected. In 2005, an experiment group at
MIT, Zwierlein et al. [5] provided direct observation of vortices in a strongly interacting
Fermi gas. Following this ground-breaking work, further theoretical work has been done to
study vortex structures in more details and in new Fermi systems (for example, [6] [7]).

Preliminary on ultra-cold Fermi gases

In order to discuss vortices in Fermi gases, it’s necessary to have a basic picture of the
relevant physics systems in question. I would mainly follow discussions of Leggett [8] and
Sa de Melo [9]. The systems we are dealing with here are Fermi alkali gases of 40K and 6Li.
We will consider systems of two hyperfine species, denoted in pseudo spin notation as | ↑>
(spin up) and | ↓> (spin down). They can be trapped in a magnetic field due to interaction
with magnetic field. Since their energies depend on magnetic field, we could use magnetic
field to tune effective interactions between the two hyperfine species. Recently experiments
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use laser trapping to trap Fermi atoms, while magnetic field is used to tune the effective
interaction strength between two hyperfine species. The raw data in experiments reduces to
a measurement of density of the system as a function of space and possibly time.

The interaction between two species is characterized by scattering length. Since we
are studying dilute Fermi gas (kr0 � 1, k is wave vector of relative wavefunction of two
atoms, r0 is typical interaction range), we only need to consider s-wave scattering to a good
approximation (so that there’s only interaction between different spins). In a two-body
interaction problem in the single-channel (i.e. the two atoms interact in a fixed interatomic
potential), the s-wave scattering length as is negative and proportional to δ−1 (δ ≡ V − Vc,
Vc is critical depth of potential well) if the interatomic potential is just too weak to tolerate
bound state and becomes positive and proportional to δ−1 if there’s just a bound state. In
a Feshbach resonance, two channels are coupled and scattering length goes from negative to
positive as magnetic field is sweeped through resonance (see Fig 1). For our purposes, it is
sufficient to think the system in a harmonic trap with tunable interaction between different
species which is controlled by magnetic field. Crudely speaking, the interaction strength
between atoms can be characterized by a dimensionless variable 1/kFas in a many-body
Fermi system, where kF is Fermi momentum for a noninteracting Fermi system. 1/kFas < 0
corresponds to BCS regime and 1/kFas → −∞ as attractive interaction becomes weak
and approaches weak-coupling BCS limit. 1/kFas > 0 corresponds to BEC regime and
1/kFas → +∞ as attraction becomes strong and approaches tight binding BEC molecule
limit. At 1/kFas = 0, the scattering length diverges (but no physical singularity) and we
are in unitary limit where real bound state in free space is about to exist. Figure 2 shows a
cartoon picture of phase diagram of the Fermi system.

Figure 1: Feshbach resonances, B0 is resonance magnetic field, ∆B is resonance width, abg
is background scattering length (the scattering length in the open channel without coupling
to the closed channel). Fig. from [9]
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Figure 2: Phase diagram of Fermi supefluid cross Feshbach resonance, TF is Fermi tem-
perature, Tc is transition temperature at which the system becomes superfluid. Fig. from
[9]

Vortex structure through Feshbach resonance

As is noted in the introduction, we expect to observe vortices in strongly interacting Fermi
gases due to density depletion in vortex cores. Indeed, vortices were observed by Zwierlein
et al.[5] in a strongly interacting Fermi gas near a Feshbach resonance. Fig 3 shows vortex
lattices in the BEC-BCS crossover, where little black solid circles are vortex cores where
particle density is lower than the bulk density.

Now Let’s turn to quantitative description of vortices, in particular cross a Feshbach
resonance. We will focus on a single vortex in the T = 0 limit, which is relatively well
studied. First question concerns with the energy of a vortex and the corresponding critical
velocity for its formation. In the weak-coupling BCS limit, a general analysis [10] from
kinetic energy associated with a vortex of circulation quanta κ and loss in condensation
energy in the vortex core of range ξBCS shows that the energy is similar to that of a Bose
system with a BCS coherence length.

E ' πκ2~2nσ
2ma

ln(D
Rc

κξBCS
) (1)

where D is a constant of order one, Rc is radius of the trapped gas in a cylinder, nσ is number
density of each spin.

It’s clear from this equation that a vortex with κ > 1 would break into several vortices
with unit circulation to lower the total energy. The point here is that the condensation
energy is negligible and the result is similar to that of a Bose system, for example, 4He. The
corresponding critical velocity for a vortex formation is rather small since it is given by the
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Figure 3: Vortex lattices in the BEC-BCS crossover. Fig. from [5]

ratio of energy to angular momentum, the former scales as N
2/3
σ while the latter scales as

Nσ. The form of energy of a vortex in equation 1, in particular its dependence on length
scale ξBCS was confirmed by Nygaard et al.[11] by solving BdG equations numerically. It
was also mentioned that there’s different length scales in gap function around the vortex
core. Since the work was in the weak-coupling limit, density near a vortex core shows no
significant difference from bulk value as expected.

Bulgac and Yu [1] showed a large density depletion at vortex core in unitary limit by
solving BdG equations numerically, assuming gap function and quasiparticle wavefuncions
according to a single vortex with unit circulation. Machida and Koyama [2], Kawaguchi and
Ohmi [3] explained density depletion due to coupling of fermionic atoms and BEC molecules
using fermion-boson coupling model. The Hamiltonian used in [2] is given by

HBF =

∫
dr[Φ†σ(r)(− 1

2m
52 −µ)Φσ(r)− UΦ†↑(r)Φ

†
↓(r)Φ↓(r)Φ↑(r) (2)

+φ†B(r)(− 1

4m
52 +2ν − 2µ)φB(r) + g(φ†B(r)Φ↓(r)Φ↑(r) + h.c.)] (3)

where Φσ and φB are the field operators for atoms and molecules, respectively. 2ν is the
energy of a molecule relative to that of two atoms, µ is the chemical potential. U is coupling
constant between atoms and g is coupling strength between atoms and molecules, which is
significant near Feshbach resonance. In the mean field approximation, the gap functions are
defined as

φB(r) = g < φB(r) > (4)

∆F (r) = U < Φ↓(r)Φ↑(r) > (5)
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In the generalized BdG equations, the effective off-diagonal potential becomes ∆F (r) +
φB(r). Similarly, an equation for φB(r) is obtained by the equilibrium condition i~ <
∂φB(r)/∂t >=< [φB(r), H] >= 0,

[− 1

4m
52 +2ν − 2µ]φB(r) =

g2

U
∆F (r) (6)

In [2], BdG equation was solved numerically in a self-consistent way with BCS gap
equation and number conservation constraint (total number of particles is the sum of the
number of the atoms and twice the number of the molecules) on chemical potential. No
trapping potential was included since the vortex core is much smaller than condense size and
is not qualitatively affected by a trapping potential. The density distribution for different
ν are shown in figure 4. For smaller ν, which corresponds to region closer to Feshbach, we
see clear density depletion and a much larger ratio of molecules. We also note that not only
for molecule, the atomic density distribution also shows BEC-like behavior near resonance.
This result is consistent with that of [3], in which similar equations were used with some
minor variations. In that letter, the total number of atoms and molecules were found to cross
in the resonance region (see figure 5), consistent with our expectation. From the number
density distributions (see figure 6), we see that as the system goes from BCS to BEC, both
atom and molecule density distribution around the vortex core become BEC like. Hence
the strong density depletion at BEC-BCS crossover is from both atom and molecule density
depletion.

Figure 4: Density distribution for different ν. nB, nF are number density for boson (fermion
molecule) and fermion respectively. Fig. from [2]

Chien et al. [4] solved BdG equations numerically and examined local fermionic density
of states N(E, r) = Σn[u2

nδ(E − En) + v2
nδ(E + En)], where En are eigenvalues of BdG

equations and un, vn eigenfunctions. They ascribed density depletion at crossover to change
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Figure 5: Total number of atoms and molecules as function of ν/EF and for particle number
and coupling strength. Fig. from [3]

of core excitation spectra (integral of N(E, r) over negative E reflects density distribution
inside the core), as shown in figure 7.

Sensarama et al. [6] studied vortex structure through the BEC to BCS crossover in
details. They found two length scales for gap function on the BCS side, while only one
length scale outside the BCS region (see figure 8). They also discussed other interesting
properties about circulating current (which maximizes at unitarity) and fermionic bound
states in the vortex core, which exist even in the bosonic regime, unique to bosonic BEC.

So far, most work has focused on single vortex properties at zero temperature. More work
for generalized situations is needed to gain more complete knowledge of vortex structure. On
the other hand, very recently, there’s a lot of interest in new systems such as spin polarized
and mass-imbalanced Fermi systems. Understanding vortex behaviors and superfluidity in
them is called for. For example, Iskin [7] studied numerically vortex core states of mixture
of 6Li and 40K at T = 0 and he found that vortex core is mostly occupied by light atoms
6Li, while 40Li is highly depleted at the vortex core.

Vortex formation in a rotating Fermi gas

Now let’s turn to the question of vortex formation. I’ll follow the work by Tonini et al. [12].
They considered 2D two-spin Fermi gases in a rotating harmonic trap and also 3D unitary
Fermi gases. They showed that vortex free gases in both cases are subject to a dynamic
instability for fast enough rotation. They then verified 2D case by numerical simulation of
BdG equations.

The stability analysis is based on hydrodynamic theory of superfluid. Introduce the phase
of order parameter S(r, t) so that the velocity field is v = 5S/m. In the rotating frame, the
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Figure 6: Density distribution for different ν/EF . |f0(r)|2 is the density distribution of a
noninteracting BEC. Fig. from [3]

hydrodynamic equations read

∂tρ = −5 ·[ρ(v − Ω(t)× r)] (7)

−∂tS =
1

2
mv2 + U(r) + µ0[ρ(r, t)]− µ−m(Ω(t)× r) · v (8)

where Ω(r, t) is angular velocity along the rotation axis z, U = 1
2
mω2[(1−ε)x2+(1+ε)y2] is

the 2D harmonic trap potential, ε > 0 measures its anisotropy. The first equation is just the
continuity equation in the rotating frame, the second equation is basically Euler’s equation.
These equations are valid for slowly varying density and phase in space (compared to the
size of a Cooper pair) and time (compared to ~/∆). Assuming the rotation frequency is
increased slowly enough so that the density and the phase follow vortex free stationary
states adiabatically. Now first solve stationary state solution (rotation free) of equation 7
and 8, and then perform a linear stability analysis of the stationary solution. In the 2D case,
take the ansatz for the phase: S(r) = mωβxy, which is consistent with the harmonic trap.
The stationary solution obeys
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Figure 7: Fig. from [4]

Figure 8: Fig. from [6]

β3 + (1− 2
Ω2

ω2
)β − εΩ

ω
= 0 (9)

The stationary solution follows the upper branch of soultion, corresponding to the stirring
procedure considered here (slowly increasing rotation velocity from zero). Then one performs
a linear stability analysis around this stationary solution and finds the region of dynamic
instability corresponding to positive imaginary Lyapunov exponents. Figure 9 shows insta-
bility domain in the Ω− ε plane for different degrees of polynomials (the form of δρ(r) and
δS(r)). The critical frequency of the first significant instability is around 0.8ω for ε = 0. In
the 3D unitary limit, the exact equation of state is known so that a similar analysis can be
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done and the resulting instability domain is more complicated than in 2D.

Figure 9: Fig. from [12]

To check whether a dynamic instability results in formation of vortices, numerical so-
lutions of 2D Fermi gas were found by solving time-dependent ”BdG” equations. It was
found that abrupt and disordered entrance of vortices occurs (for ε = 0.1) when Ω ≥ 0.7,
consistent with n = 3 instability mode where a significant Lyapunov exponent is obtained
for Ω > 0.68ω (refer to figure 9). After the turbulence is settled, a stable vortex lattice forms
(see figure 10).

Summary

I have discussed vortex structure and vortex formation in a ultra-cold Fermi gas at zero
temperature. Properties of a single vortex in a Fermi gas at zero temperature are quite
well understood. In particular, density depletion mechanisms in the crossover regime have
been confirmed and extensively studied. From above discussions, we can conclude that a
significant density depletion in the crossover regime is due to interplay of fermionic atoms and
BEC molecules and the density distribution assembles that of a true Bose system. Vortex
formation in a rotating trap is due to a dynamic instability of hydrodynamic nature triggered
by the rotating trap, which is confirmed numerically in 2D. Obviously, further studies are
needed to extend to more general situations. Also, exciting physics in newly studied systems,
such as spin polarized and mass-imbalanced Fermi gases awaits us (see [9]).
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Figure 10: Trap anisotropy ε = 0.1. Crosses: positive charge vortices. Circles: negative
charge vortices. Time is in unit of ω−1, final rotation velocity Ω = 0.8ω. Fig. from [12]
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