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Abstract
The Essay starts with an overview of the percolation approach and classical elasticity

theory of the vulcanization transition of rubber, describing their assumptions and their
limitations. Thereafter we discuss a third approach, the Vulcanization Theory (VT) which
incorporates the effects of thermal fluctuations and quenched random disorder. The VT is
an order parameter theory in the true Landau tradition. We discuss the very subtle type
of spontaneous symmetry breaking that occurs in the transition from liquids to amorphous
solids and we define a suitable order parameter that captures this symmetry breaking. This
necessitates the introduction of replica field theory, and we discuss what these replicas
represent physically. We also discuss the physical meaning behind the resulting Goldstone
modes. We conclude the Essay by describing a few applications of VT.

1 Introduction: The Percolation Picture

This Essay will be a somewhat partisan introduction to that highly-relevant but oftentimes
lightly disdained subset of physics known as rubber vulcanization. The partisan character
necessarily emerges as the result of my highly selective and deficient knowledge of the field. I first
encountered rubber vulcanization through the lenses of Vulcanization Theory (VT) [1], [20], [21],
and only started learning about other more historical approaches such as percolation theory [8]
and the classical theory of rubber elasticity (as outlined in [3]), mainly because I have to make
this Essay reasonably objective and self-contained. VT follows the standard Landau paradigm
(for more on paradigms in Physics, see [9]) insofar as it relies on order parameters, symmetries
and length scales. It’s independent of what we assume for the microscopic details, and hence is
fully appropriate to describe the universal, long-wavelength properties of rubber, which means
that any phenomenological theory of rubber elasticity should be derivable from it. VT has
conceptually achieved for the vulcanization transition in rubber what BCS has achieved for the
superconducting transition of the first type.

We shall understand the vulcanization transition in a highly specific sense, that of the vul-
canized medium acquiring a non-vanishing shear modulus upon sufficient crosslinking. Crosslink-
ing is the process by which reactants are added to an initially liquid solution of polymer strands
that causes neighbouring strands to bond between various monomer pairs. In this sense the
density of crosslinks functions as our external control parameter. There is another type of phase
transition which is temperature-controlled, a transition from rubber to rubber-glass having to
do with the freezing of degrees of freedom of chains to rotate about single bonds in the chain
backbone. This type of transition won’t be discussed in our Essay (see instead [3]).

As a first attempt at a theory of rubber elasticity, we may consider a hypercubic lattice
of atoms, each atom being adjacent to z other neighbours (z is called the functionality), and
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we randomly sprinkle ”bonds” between pairs of atoms. Then denoting the fraction of bonds
by p, we can ask at what value of p = pc we first obtain an infinitely long percolating cluster
of bonds. Such an infinite percolating cluster can be thought of as our solid rubber, while a
mere liquid-like melt of polymer chains will consist of many finite clusters. Polymer physicists
typically work at the ”tree level” approximation when they study the vulcanization transition
in the percolation picture. This assumes there are no closed cycles or steric hindrances. This
approximation fails to capture correctly below a certain critical dimension (six in this particular
case) the critical behaviour (i.e. the scaling exponents of the transition, e.g. in Q ∼ (p− pc)ν ,
Q being the fraction of the infinite cluster) for dilute systems where the functionality z is small.
However, for the particular case of rubber which is a dense system, where each monomer is
essentially in touch with N − 1 other monomers, the functionality z ∼ N � 1, and we get
that fluctuation effects tending to make the system deviate from the tree level approximation
are small. Thus tree-level percolation theory gives a fairly accurate description of the critical
behaviour of rubber vulcanization. One result of percolation theory is that the critical value
pc at which the percolation transition occurs coincides with the critical fraction of crosslinks at
which vulcanization occurs in VT (which we shall introduce later). The scaling behaviour is also
in agreement with that predicted by VT. Writing the the density of bonds as η2, percolation
theory gives us the following result:

1−Q = exp(−η2Q). (1)

We shall see that this relation recurs later in VT. At the percolation transition threshold (the
critical regime 0 ≤ η2 − 1 � 1), it’s convenient to exchange η2 for another control parameter
which we call ε defined by η2 ≡ 1 + ε/3 (0 ≤ ε� 1). Then we have

Q = 2ε/3, (2)

implying that it is a continuous phase transition, with the critical density of bonds η2
c = 1.

However, the percolation transition is a purely geometrical transition which neglects the
effects of thermal fluctuations. Hence it cannot explain the origin of shear modulus which
emerges from thermal fluctuations of the polymer chains. The percolation picture only addresses
the problem of architecture, i.e. how the connectivity of the network of random bonds can
lead to an infinite cluster; it doesn’t address the issue of how this floppy network can acquire
shear rigidity. That will have to emerge from thermodynamics. Rather hand-wavily, we can
see this as follows. In an amorphous solid as rubber, there is both a breaking of translational
invariance coming from the preference of crosslinks to localize themselves at particular positions
with respect to their neighbours (in order to minimize the free energy), as well as a further
breaking of ergodicity in that a system prepared in a certain topology is not able to evolve to
a topologically inequivalent arrangement without breaking some of the crosslinks or polymer
chains. It is this particle localization (because the system wants to minimize free energy, and
topology) that ”causes” the floppy network to acquire the property of stiffness.

2 Classical theory of rubber elasticity

Traditional wisdom has it that rubber elasticity is entropic. This assertion effectively means
that the shear modulus of rubber is completely determined by temperature, and vanishes at
zero temperature. (It is intriguing to think about whether this still holds true at the quantum
level, where quantum fluctuations may renormalize the shear modulus to a finite value despite
being at zero temperature). This can be seen in the following way. We can think of a polymer
chain with N monomers each of length a as a random walk with a as the step length. Then in
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three dimensions, the mean squared end-to-end vector for a random walk of N steps is given
by

〈R2
x〉 = 〈R2

y〉 = 〈R2
z〉 = 〈R2〉/3 = a2N/3. (3)

The random walk model of polymer chains leads to a Gaussian-shaped probability of finding
that a single chain conformation has an end-to-end vector R:

P ∼
(

3

2πR2
0

)3/2

exp(−3R2/2R2
0), (4)

where R0 is the variance. The single chain free energy F = −kBT lnZ(R), and since the
partition function is proportional to the probability distribution, for N chains we have that
F = NkBT (3R2/2R2

0) + Constant = U − TS, U being the internal energy of the chains. The
representation of polymer chains as a random walk neglects any internal energy between chains,
so U = 0 and the free energy is entirely entropic. Then the tension per unit area in the polymer
chain is given by p = T (∂S/∂V )U ∼ −kBT (3R2/2R2

0) (since V ∼ N), which is Hooke’s law
with an entropic spring constant. Thus elasticity is entropic.

The classical theory of rubber elasticity developed e.g. by Kuhn, Wall and Flory (See
e.g. [3]) takes over the assumption that polymer chains can be modeled as random walks,
and in addition assumes (1) that there is no change of volume on deformation of the rubber,
(2) the crosslinking points of the network of chains move under deformation affinely, i.e. the
components of length of each chain change proportionately as the corresponding dimensions of
the bulk medium, i.e. Ri → R′i ≡ ΛijRj (where Λ is a matrix representing shear deformation,
and volume conservation implies det Λ = 1) and (3) the entropy of the network is equal to the
sum of the entropies of constituent chains. For a uniaxial shear deformation one can then write

Λ =

λ 0 0

0 1/
√
λ 0

0 0 1/
√
λ


where the first diagonal entry means the rubber is being stretched by a factor λ in one (lon-
gitudinal) direction while the second and third diagonal entries mean that it’s simultaneously

being shrunk by a factor 1/
√
λ in the two transverse directions. Then under uniaxial defor-

mation, the average free energy cost for N chains becomes F = 3NkBT 〈RTΛTΛR〉P (R)/2R
2
0 =

NkBTTr(Λ
TΛ)/2 = NkBT (λ2 +2/λ)/2, where 〈·〉P (R) means we’re averaging over the Gaussian

distribution P (R), so e.g. we get 〈RiRj〉P (R) = δijR
2
0/3. This gives us

df

dλ
= µ(λ− 1/λ2)

⇒ λdf/dλ

λ− 1/λ2
= µ(1/λ)−1. (5)

This expression will be relevant to our comparison with experiments via the so-called Mooney-
Rivlin plot, which is essentially a graphical plot of λ(df/dλ)/(λ − 1/λ2) versus 1/λ. At this
point we’ll engage in an experimental digression in order to understand the conventions used
in Fig. 1.

We define the total stress acting on a rubber sample as the difference σαβ = σelαβ−Πδαβ, where

σel is the elastic stress obtained by differentiating the elastic free energy of the chain network
(which is F = kBT (3R2/2R2

0)) with respect to the strain imposed thereby: σαβ ≡ ∂F/∂εαβ|ε=0
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for a strain Rα → Rα + εαβRβ. The pressure Π arises e.g. from the internal pressure exerted by
the crosslinks. For a uniaxial stress in the z direction, the total stress in the x and y directions
is zero, and we may equate the pressure Π to e.g. σelxx. Then (after [5]) we may characterize f ∗

as the ”Mooney ratio” of the total stress σzz−σxx to the functional dependence λ2−1/λ, where
for an affine deformation Rα → λαRα. Observing that the variation dεαα = dλα/λα, we can

write σαα ≡ λα∂F/∂λα and λz = λ, λx = λy = 1/
√
λ, whence f ∗ = (σzz − σxx)/(λ2 − 1/λ) =

(λz(∂f/∂λz)−λx(∂f/∂λx))/(λ2− 1/λ) = (3λ(∂f/∂λ))/(λ2− 1/λ), which is essentially our Eq.
(3).

Figure 1: Mooney-Rivlin plot [5]. �,� rep-
resent natural rubber samples, N,H, • repre-
sent poly(dimethylsiloxane) networks.

How realistic is the classical theory of rubber
elasticity? Eq. (5) indicates that we get a hy-
perbola tending towards ∞ as 1/λ → 0, and 0
as 1/λ→∞ for the Mooney-Rivlin plot, but for
the rubber samples studied in Fig. (1), what we
see are gentle humps ... Thus the classical the-
ory cannot be completely correct. The assump-
tions of affine deformation and Gaussian statis-
tics are hard to believe for the case of real rub-
ber, which is a heterogeneous random medium
(brought about by the random nature of the vul-
canization process). Thermal fluctuations have
also been neglected; as we shall see later, it turns
out that the Goldstone sector of these thermal
fluctuations gives rise to the elastic shear mod-
uli.

3 Describing the physics of
quenched disorder

Any respectable theory of rubber vulcanization
should have to begin with the observation that
rubber is amorphous. Amorphous solids have
the crucial feature that they involve two kinds
of variables, thermal (or annealed) and quenched, which are defined by their vastly different
time scales of relaxation: thermal variables relax on a time scale comparable to the time scale of
the experiment, while quenched variables relax on a much longer time scale which means they
can be approximated as being ”frozen in”, i.e. permanent to most appearances. This will be
pertinent to constructing a microscopic model of rubber. From the renormalization group point
of view, it is not important whether we start with a model of an extremely long polymer chain
or an array of atoms randomly selected to be crosslinked, because at long length scales micro-
scopic conformational details are irrelevant. We shall therefore introduce the Randomly Linked
Particle Model (RLPM) [2] which is essentially an array of atoms or monomers with pairs ran-
domly chosen to be crosslinked, augmented by two types of interactions between monomers: an
excluded volume interaction which is basically a repulsive delta-function pseudopotential, and
an attractive interaction between pairs of monomers that have been chosen to be crosslinked.
The former arises from two sources: the self-avoidance of the chains and their interaction with
the solvent. The first point is clear enough; for the second, we note that in good solvents the
network is swollen, indicating that polymer chains are further apart; this may be represented as
coming from a larger excluded volume interaction (i.e. a larger ν2). In a poor solvent there is
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a higher likelihood of segregation of polymer species from solvent, polymer chains are clumped
closer together which may be taken as a result of a smaller ν2. Fluctuating monomer positions
are thermal variables and crosslink positions are quenched variables. The Hamiltonian of such
a system reads as follows:

Hχ =
ν2

2

N∑
i,j=1

δ(ci − cj) +
M∑
e=1

vL(cie − cje). (6)

ci labels the monomer positions for N monomers, e labels the crosslinks in a given realization
of quenched disorder, and M specifies the total number of crosslinks. vL is the potential energy
of a bond between a pair of monomers crosslinked together, which for the case of ”Gaussian
chains” (so-called because they lead to Gaussian statistics) may take the form

vL(|r|) =
kBT |r|2

2a2
(7)

where a denotes the rest length of the bond (imagined to be a Hookean spring).
Quenched disorder arises in amorphous solids because of the inherent nature of the vulcan-

ization process. To make a rubber, we can imagine first starting with a solution of polymer
strands, onto which we sprinkle instantaneously and simultaneously chemical covalent bonds
to initiate cross-linking, by which I mean different strands are conjoined together at various
monomer positions. The act of sprinkling involves an element of randomness. The probability
of finding a crosslink at a given monomer position can thus be described by some distribution.
Intuitively, we expect that a high probability that pairs of chain segments happen to be near to
each other will result in a large number of crosslinking constraints in the form of chemical bonds
formed, and conversely: the probability depends on the average density of crosslinks η sprinkled
into the liquid. This is precisely captured by the Deam-Edwards (DE) distribution [6], defined
as follows:

P (χ) =

(
η2V0

2N∆
(0)
0

)M
Zχ(V0)

M !Z1

(8)

Here Zχ(V0) is the partition function describing the equilibrium correlations of the liquid just
before the crosslinking transition, with positions of monomers for its thermal variables. η
is an external parameter that can be experimentally tuned, and this parameter controls the

VT transition. The factor

(
η2V0

2N∆
(0)
0

)M
/M ! is a Poisson distribution, we’re assuming that the

chemical crosslinking process is Poissonian. This product or probabilistic conjunction of factors
assures us that only those configurations of crosslinks which are reasonably similar to the
configuration of the liquid correlations just before crosslinking are more predominantly selected.

Now to make any further progress we need to construct the free energy by which we could
then derive other macroscopic averaged physical quantities like pressure or entropy. This free
energy has to involve averaging over two kinds of ensembles, the thermal variables and quenched
disorder variables. Naively, we might think of treating both thermal and disorder variables on
an equal footing and averaging over them (by means of a Boltzmann distribution) within the
partition function. But this would mean that both types of variables relax to equilibrium on
the same time scale, which is not what we want (since the disorder variables are meant to be
quenched i.e. relaxing on a vastly longer time scale than the experimental time scale).
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The alternative would be to Boltzmann-average only the thermal variables within the parti-
tion function, but average the free energy itself over the disorder variables by means of another,
DE distribution. Why the free energy and not, say, the partition function? We disorder-average
over the free energy because we expect that in the thermodynamic limit physical observables
are self-averaging, i.e. they do not depend on a specific realization of disorder. Mathematically,
self-averaging means that the relative fluctuations about the average thermal value of a phys-
ical quantity goes as O(N−1/2), where N is the number of particles in the system. Physically,
self-averaging quantities (such as the free energy) have to be extensive, which means that its
additive property permits us to conceive of the disorder-averaging process as the consequence
of dividing the macroscopic system into regions each bigger than the size of a fluctuation cor-
relation length, which implies these regions are statistically independent of one another and
therefore averaging over the system is equivalent to averaging over a probability distribution
describing the disorder. This allows us to get the same results for experiments and also make
it possible to compare theoretical predictions with what is observed experimentally. This rules
out disorder-averaging the partition function, because it is not extensive, and hence not self-
averaging. The disorder-averaged free energy is as follows:

[F ] =
∑
χ

P (χ)Fχ = kBT
∑
χ

P (χ) lnZχ (9)

where χ labels each specific realization of a disordered configuration of the crosslinked gel. The
square brackets [.] is the standard way to denote disorder averaging.

4 Replicas and their physical interpretation

It is quite difficult to directly average a logarithm, but there is a mathematical trick (the
”replica trick”) to circumvent this difficulty. Essentially, it involves the following: For small n
we may write, xn = exp(n lnx) ≈ 1 + n lnx. Then

lnx = lim
n→0

xn − 1

n
(10)

⇒ [F ] = kBT
∑
χ

P (χ) lim
n→0

Zn
χ − 1

n
= kBT lim

n→0

[
Zn
χ

]
− 1

n
. (11)

Then our problem becomes the evaluation of the following:

[
Zn
χ

]
=

∑
χ

P (χ)TrS1 exp(−βHχ({S1}))...T rSn exp(−βHχ({Sn}))

=
∑
χ

(
η2V0

2N∆
(0)
0

)M
Zχ(V0)

M !Z1

TrS1 exp(−βHχ({S1}))...T rSn exp(−βHχ({Sn}))

∼
∞∑

M=0

N∑
i1 6=j1

...

N∑
iM 6=jM

(
η2V0

2N∆
(0)
0

)M
M !

TrS0TrS1TrSn exp(−βHχ({S0}))...

× exp(−βHχ({S1}))...T rSn exp(−βHχ({Sn})), (12)
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where S represents the possible microscopic states in the statistical ensemble of the system. (For
magnetism, S represents spin orientation; for polymers S represents polymer conformations.)
Thus we see that the replica trick entails making n + 1 replicas of the disordered, amorphous
system, n of which are ”copies” of the crosslinked or measurement state and one of which
comes from the DE distribution and describes the pre-crosslinked or preparation state. Any
two replicas are sufficiently distantly separated in time so that the thermal fluctuations of
the localized particle about a common mean position in each replica are independent. This
also means that we have translated the problem involving two types of variables relaxing on
two vastly different time scales into one problem in which we are solely dealing with thermal
variables, but which involves n + 1 replicated copies of the same system (and the disordered
crosslinks have metamorphosed into interactions between different replicated thermal variables).
More provocatively: quenched inhomogeneities of rubber structure in real space can be treated
as thermal fluctuations in replica space and the problem of calculating frozen disorder can be
attacked with the usual methods of equilibrium statistical physics!

5 Defining a suitable order parameter

We shall switch the order of averaging, by performing the disorder averaging
∑

χ =
∑∞

M=0

∑N
i1 6=j1

...
∑N

iM 6=jM first and then doing the thermal averaging (tracing over the various ”spins”) later.
This will couple different replicas of the thermally fluctuating monomer positions together, re-
sulting in a complicated field theory. To decouple the different replicated terms, we need to do
something called a Hubbard-Stratonovich transformation (which is a high-brow way of saying
”completing the square”) on the thermal variables which results in a new collective coordinate
defined on replicated space, defined (for n replicas) as follows:

Ω(x̂) =
Q

N

N∑
j=1

δ(d)(x0 − c0
j)δ

(d)(x1 − c1
j)...δ

(d)(xn − cnj )− Q

V0V n
(13)

Ω(p̂) =
Q

N

N∑
j=1

exp

(
i

n∑
α=0

pα · cαj

)
(14)

Q denotes the ”gel fraction”, which if we think of the vulcanized system as a sort of percolating
cluster, then Q would be the fraction of molecules that are connected into an infinite cluster.
Here we have abbreviated x̂ for the n+ 1 times-replicated d-dimensional vector ~x, and α labels
the replicas. Now the Hubbard-Stratonovich transformation is done before thermal averaging,
and the thermal averaging in turn is done before disorder averaging of Zn. This ordered
sequence will give us

[〈Ω〉] =

[
Q

N

N∑
j=1

n∏
α=0

〈exp(ipα · cj)〉

]
, (15)

This both disorder- and thermal-averaged collective coordinate [〈Ω〉] is the order parameter for
the VT. In the case of a liquid where all N particles are delocalized, this fails to vanish only for
the case where every wave-vector ~pα

n

α=0 vanishes. But when some fraction Q of the particles
are localized then the order parameter is non-vanishing if

∑n
α=0 p

α = 0.
How reasonable is [〈Ω〉] as an order parameter that allows us to differentiate an amor-

phous solid from a liquid? We could have thought of using the disorder- and thermal-averaged
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monomer density fluctuation as the order parameter, but this won’t work, because in the amor-
phous state, owing to the randomness of the localized monomers, the macroscopic disorder-
averaged density fluctuation remains zero on entering from the liquid phase. And this is not
surprising: for amorphous systems, the order parameter tends to be a distribution, whereas for
crystalline solids the order parameter has usually been a number. We need a more subtle char-
acterization in terms of higher moments of the correlation function to capture the transition;
this is reminiscent of the construction of the Edwards-Anderson order parameter in the spin
glass problem (see e.g. [24]), only more complicated. Observing that in momentum space the
density fluctuation for the jth monomer δn(pj) = 〈exp(ipj · cj)〉, we can see that

Ω(1)(p) ≡ Q

N

N∑
j=1

δnj(p) =
Q

N

N∑
j=1

exp(ip · cj) exp(−p2ξ2
j /2)

Ω(2)(p,−p) ≡ Q

N

N∑
j=1

δnj(p)δnj(−p) =
Q

N

N∑
j=1

exp(−p2ξ2
j ) (16)

where ξ2
i is the mean-squared fluctuation distance around the mean position of the i-th monomer.

(We’re dealing with an amorphous system, so different monomers are localized with different
”spreads”.) It can be seen that the first moment vanishes in the thermodynamic limit due to
the addition of a large number of random phase factors, while the second moment doesn’t. In
the spin glass problem, the first and second moments completely specify the physics but in the
vulcanization problem, we need all higher moments to gain a complete characterization of the
physics. The order parameter in VT represents the condensation of many different replicas of
the vulcanized system in replica space into a kind of ”molecular bound state”. This is certainly
more awe-inspiring than the BCS order parameter which represents the condensation of merely
two electrons in real space. If the particles are localized according to Eq. (16) with random
spreads ξ, then we can write the order parameter [〈Ω〉] as follows:

[〈Ω〉] = (−Q)δ
(n+1)d

p̂,0̂
+Qδ

(d)∑n
α=0 ~p

α,~0

∫
dξp(ξ) exp(−ξ2|p̂|2/2), (17)

where p(ξ) =
[∑

j,localized δ(ξ − ξj)/(QN)
]

is the distribution of the random spreads of the

localized particles.

6 A Landau theory for the vulcanization transition

If we Taylor expand the free energy in terms of the small parameter [〈Ω〉] (small, since we are
at the threshold of VT), but before taking the replica limit n→ 0, we will obtain the following
cubic Landau free energy,

ndFn({Ωp̂}) =
∑
p̂εHRS

(
−aε+

b

2
|p̂|2
)
|Ωp̂|2 − c

∑
p̂1,p̂2,p̂3εHRS

Ωp̂1Ωp̂2Ωp̂3δp̂1+p̂2+p̂3,0̂
(18)

The ε-parameter controls the transition from the liquid to the amorphous solid state, and is
related to the cross-link density via µ2 = 1+ε/3. Thus we can see that there is a phase transition
at ε = 0 or the critical crosslink density, µ2

c = 1. Let us pause to consider how remarkable this
result is. For one thing, the critical crosslink density does not involve the strength of excluded
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volume interaction that we might naively expect. This seems to suggest that the transition
does not relate to a finite energy scale, but stems instead from a qualitative aspect: possibly
the increasing complexity of the topological network with increasing crosslink density. ”HRS”
denotes the ”higher replica sector”, as opposed to ”one-replica sector” or ”zero-replica sector”.
These terms are defined as follows: For an order parameter having n replicas for its argument,
if all vectors in the argument are vanishing, then we say the order parameter resides in the
zero-replica sector. If exactly one vector in the argument is non-vanishing, then it resides in
the one-replica sector. If more than one vector is non-vanishing, it resides in the higher replica
sector. The fact that our order parameter lies in the higher replica sector is a manifestation of
the fact that averaged monomer density fluctuations are unable to distinguish amorphous solids
from liquids, but higher moments of density-density correlators can. One final word about the
Landau expansion. A field theorist may be disturbed by the negative sign on the prefactor of
the cubic term as that seems to lead to a pathological field theory, e.g. a runaway trajectory
in the renormalization group flow. The answer is that higher order terms will stabilize the
theory; [22] have proved that the theory is locally stable.

By substituting the gel-fraction form of the order parameter into the Landau expansion,
invoking stationarity and taking the replica limit n → 0, one finds that at the VT transition
threshold, ε is related to the gel fraction via

Q = 2ε/3. (19)

How correct is our taking a mean-field approach to vulcanization in the form of a Landau
expansion? Renormalization group calculations done e.g. in [23] show that in less than six
dimensions, fluctuations are non-dangerous and the mean field theory gives us fairly accurate
critical indices, which turn out to match the analogous exponents in percolation theory.

7 Why Goldstone modes are important

In an amorphous solid such as rubber, it is the relative translational invariance between different
replicas which is broken (and not their common translational invariance). This broken relative
translational symmetry gives rise to Goldstone modes which are phonons, and it turns out that
the rigidity associated with these phonons is manifested as their shear moduli. Let us give a
heuristic argument why fluctuations of phonon modes are important. At long length scales (on
sufficient coarse-graining), microscopic details such as polymer chain entanglements become
irrelevant. The only important remaining degrees of freedom are the phonon modes. For soft
amorphous solids like rubber the typical strain is of order unity, implying that the total elastic
energy per unit volume scales as the shear modulus µ. At the vulcanization threshold the
only important length scale is the mean localization length (or the vulcanization correlation
length) ξ, thus in d dimensions, fel ∼ µ ∼ kBTξ

−d. Now if we denote Λ ∼ ξ−1 as the large
momentum cut-off beyond which the system does not behave as a regular solid, we have that
the number of phonon modes per unit volume is Λd. By the equipartition theorem, fluctuations
of each phonon mode contribute kBT to the total free energy. Thus these phonon fluctuations
(which are Goldstone fluctuations) contribute an energy of the order ∼ kBTΛd ∼ kBTξ

−d

which is essentially the same as what we estimated for our total elastic free energy per unit
volume based on scaling arguments! This should persuade a skeptic that the elastic free energy
is mainly the emergent phenomenon of Goldstone fluctuations, which the classical theory of
rubber elasticity has neglected. Furthermore, it has been shown that the classical theory is the
saddle-point of VT [27].
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To see how the relative translational symmetry of replicas is broken, let us first define a new
basis of replicated vectors in terms of the Cartesian replica basis:

ε̂L ≡
1√

1 + nζ2
(ε0 + ζ

n∑
α=1

εα) (20)

Then any (1 + n)d-dimensional vector x̂ may be decomposed as follows: x̂ = x̂L + x̂T , x̂L =
(x̂ · ε̂L)ε̂L, x̂T = x̂ − x̂L (L denotes the longitudinal component and T the transverse compo-
nent). The longitudinal component represents some kind of centre-of-mass coordinate and the
transverse component the relative coordinate. This is apparent by working in two dimensions
and setting ζ = 1: then, ε̂L = (ε̂1 + ε̂2)/

√
2, ε̂T = (ε̂1 − ε̂2)/

√
2.

In a real d-dimensional rubber the volume in the measurement state (i.e. after vulcanization)
will shrink (because of the inward directed pressure exerted by attractive crosslinks) by some
factor ζd, which means that the mean position z of a localized particle in the measurement state
will be modified by a factor ζ: z → ζz; the mean position of the particle in the preparation
state however, stays at the same value z. If we write τ ≡ 1/ξ2, where ξ is the localization
length (i.e. random spread of a particle), the order parameter in real space can be expressed as

Ω(x̂) = Q

∫
dz

V0

∫
dτP (τ)

( τ
2π

)(n+1)d/2

exp(−τ
2

(|x0 − z|2 +
n∑

α=1

|xα − ζz|2))− Q

V0V n
(21)

By writing ẑL = (z, ζz, ζz, ...) =
√

1 + nζ2zε̂L, this becomes:

ΩSP (x̂) = Q

∫
dτP (τ)

( τ
2π

)(1+n)d/2
(

2π

τ(1 + nζ2)

)d/2
exp(−τ

2
|x̂T |2)− Q

V0V n
. (22)

Figure 2: (a)Value of order parameter at sad-
dle point, depicted in terms of brightness. x1

and x2 are the two replicas. (b)Goldstone
deformation of the saddle point.

Thus we see that the order parameter remains
invariant for translations in the x̂L direction,
which means that the system is invariant under
common translations and rotations of all repli-
cas; there is a Gaussian bump or hill in the x̂T
direction though, representing relative transla-
tions between different replicas. Thus the rela-
tive translational symmetry is broken. Subject-
ing the replicas to a common translation does
not alter the free energy, and the free energy
depends only on the relative translational co-
ordinate. The ”gapless” Goldstone fluctuations
will be in this broken symmetry direction. This
is reminiscent of the situation of the water-air
interface in a beaker in the absence of gravity
(since gravity stabilizes the water surface), where
a translation of the entire interface does not al-
ter the free energy of the interface. The presence
of the interface breaks translation invariance and
gives rise to Goldstone modes which are capillary waves, i.e. ”gapless” undulations of the in-
terface [34]. See Fig. (2). The precise form of the energy due to such Goldstone fluctuations
has been computed in [10] and [11] and shown to be equivalent to the energy for shear defor-
mations in a phenomenological theory that involves replicating the disordered system n times
and taking non-affine deformations into account.
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8 Conclusion

We have discussed the percolation approach and classical theory of rubber elasticity, and given
an overview of their merits and shortcomings. We have also discussed a third approach in the
guise of VT which appears to be more powerful than either of them, in the sense that it takes
into account both thermal fluctuations and quenched disorder, and e.g. gives a satisfactory
explanation of where the shear modulus comes from. One major drawback of VT is the follow-
ing. A real rubbery network inhabits a certain sector of phase space consisting of topologically
equivalent configurations, so strictly speaking, our partition function should respect this fact.
Instead, VT does not distinguish between configurations with inequivalent interlocking closed
loops. So while crosslinks are treated as being quenched or permanent, VT assumes that poly-
meric strands can somehow pass through each other to evolve to an inequivalent topological
configuration. From a logical perspective, this is unsatisfactory.

However, VT has been applied to various physical situations involving vulcanization to give
us a satisfactory understanding of what happens at the microscopic level. The extension of the
classical theory of rubber elasticity to study liquid crystal elastomers in work done by Warner,
Terentjev and co-workers (see, e.g. [31]) arises as a limiting case of a VT that’s coupled to
nematic order [28], [29]. VT has also been used to study glassy correlations in an isotropic melt
of two species of homopolymers (”A” and ”B”) [32], [33]. The glassy correlations in nematic
elastomers and quite possibly the polydomain structure can also naturally be analyzed using
VT. [35] The non-affine generalization of VT [10] [11] [13] coupled to nematic order may also
possibly shed light on the origin of semi-softness in nematic elastomers. [30]
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