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Abstract

Many species of fish, birds and insects exhibit collective motion
in the form of schools, flocks and swarms. Attempts to understand
the mechanism of their collective motion suggest a many-bodied, local
interaction, leading most studies to use a computational approach to
study a discrete model of interaction between members of the flock.
Over the past twenty years, simulations have demonstrated that col-
lective motion may emerge from very simple behavior of each entity in
flock, where the entity chooses its direction of motion from the aver-
age of its local environment. A model, inspired by studies of granular
systems, shows collective motion of self-propelled particles that collide
inelastically. Here, the essential features from these minimalist models
are described, and the resulting implications for biological flocks are
discussed.
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Introduction

The emergence of a consensus arises from the interactions between the indi-
viduals and is known as collective behavior. Collective behavior encompasses
a plethora of phenomena in the social sciences, economics, and animal behav-
ior, such as the emergence of a common language in primitive societies [1],
a belief in a price system [2], and the collective motion of animals, which is
the focus of this paper.

The biological and evolutionary implications of flocking are compelling.
For animals, flocking is emergent in an evolutionary sense. Simulations sug-
gest that flocking emerges as a means of predator evasion (as opposed to a
foraging tactic) [3], in accordance with sonar imaging studies that recently
demonstrated waves in anchovy schools in response to predation [4]. While
the biological role of flocking behavior is a tantalizing topic worthy of men-
tion, this paper concerns the emergence of flocking behavior as a statistical,
rather than biological, phenomenon.

There are a plethora of biological examples of flocking across many scales,
ranging from animals to protozoa, to filaments within the cell [5]. Outside
of biology, researchers are trying to apply collective motion to autonomous
robots [5]. Moreover, Humans exhibit flocking behavior in crowd situations.
A series of scale bridging images of collective motion are shown in Fig. 1.
The presence of collective motion with similar features across a wide variety
of scales indicates that the patterns that emerge have more with how the
entities interact than the complexities of the individual entities.

Most models of flocking behavior describe the behavior of each animal in
relation the position and velocity of that animal’s neighbors. When certain
parameters in the model are tuned, collective motion emerges spontaneously.
The details of a minimalist model of collective motion are explained in the
next section, followed by a qualitative description of basic extensions of this
model. A second minimalist model is introduced, and the similar underlying
features of both models are discussed. Finally, efforts to collect 3-D data of
actual flocks are discussed.

Modeling approaches

The study of flocking behavior largely consists of simulations of a flock of
autonomous animals with a defined set of behavior. Hereafter I will refer to
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Figure 1: Images of collective motion indicating general behavioral patterns,
taken from Vicsek [5]. (a) Bacterial colony grow out from a central colony,
leaving a trace of bacterial behind. (b) Starving slime molds aggregate into a
central rotating region. (c) Wingless locusts march in a field. (d) A rotating
colony of South American fire ants. (e) A school of fish forming a vortex.
(f) A flock of thousands of starlings. (g) A group of interacting robots about
to disperse. (h) The same robots, instructed to keep a distance from one
another. (i) People dispersed in a triangular lattice while sitting for hours in
a Hungarian hot spring pool.
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such models of animals as particles.
There are two trends for modeling of flock behavior. Within the physicist

community, minimalist models of pairwise interaction between particles are
sought that give rise to new modes of collective motion. Conversely, much of
the work in the biological community seeks to accurately model the behavior
of actual flocks to a precise degree, in an attempt to uncover the underlying
individual behavior. I will focus on the first type of model, and the modes
of collective motion that emerge from the models.

The Vicsek model

One of the simplest models of flocking behavior, the Vicsek model (VM) [5, 6,
7], uses particles that move a constant velocity v0 in a two-dimensional, finite
unit cell. At each timestep the particle looks at all the other particles within
a distance r0, and updates its direction of motion to coincide with the other
particles, with some error white noise. More precisely, in two dimensions,

θj(t + δt) = arg

[
N∑

k 6=j

eiθk(t)

]
+ η rand[−π, π], (1)

where η is a coupling parameter that represents the amount of error for each
particle, and the sum runs over all particles within some r0 of particle j.
When η = 1, the particles follow a random walk, and when η = 0, they
rapidly become oriented in the same direction. The order parameter at a
given instant for the system is the average direction of motion of all the
particles,

〈φ〉t =
1

N
arg

[
N∑
k

eiθk

]
. (2)

As η is varied, a second order phase transition [5] in the order parameter
occurs, and the rotational invariance of the system is spontaneously broken.
The critical noise level, ηc, at which the system’s behavior transitions from
disorder to order depends on the average density of particles in the system;
systems with a larger average density of particles are able to transition at
higher noise levels. These results are summarized in Fig. 2

Models of flocking behavior incorporate error in two essentially different
ways: the particle can either make mistakes when moving after perfectly
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Figure 2: Phase transition in the Vicsek model. (a) Time average order
parameter 〈φ〉t vs. noise strength η for two VM systems with the same
density, but different sized periodic unit cells (L = 64 black circles; L = 256
for red diamonds). The other parameters are the same. (b) The phase
diagram for onset of collective motion. Kindly ignore the insets. Figure
taken from Chaté et al. [7].

evaluating its neighbor’s positions and directions (as in the VM), or the par-
ticle can make perceptual mistakes when evaluating each neighbor’s position
and direction. The distinction appears minor at first glance, however, when
error is incorporated in the second manner, a first order phase transition is
observed as the noise parameter η is varied. This is because with the second
type of error, groups of particles that are locally oriented experience weaker
noise than disordered groups. In the latter case, the correlated groups will
not occur as readily, and when they do, the system will transition rapidly to
an ordered state since they are affected less by the noise.

While the VM captures interesting features of emergence, it fails to cap-
ture one of the most basic properties of animal behavior: cohesion. That is,
when VM particles are simulated in an infinite space with η > 0, the flock
disperses [6]. A cohesive extension of the VM includes an interaction force
that is attractive at r0, but repulsive at shorter distances [6]. In addition to
the emergence of orientation, the cohesive VM exhibits emergent cohesion
as the strength of cohesive forces is increased. Essentially, the addition of
cohesive forces extend the results of the VM to unbounded simulations cells.

Inelastic collision models

A second very recent, minimalist model considers self-propelled particles that
interact only through inelastic collisions [8]. The model seek to find connec-



What the Flock? 6

Figure 3: Time evolution of a system of 1200 inelastically colliding, self-
propelled particles. Time increases in each frame. Figure taken from Gross-
man et al. [8]. For movies, see here.

tions between driven granular systems (such as rice on a vibrating plate), and
minimalist flocking models such as the VM. The inelastic collision model re-
sults in transitions between disordered and ordered phases. Both migration
(see Fig. 3) and vortex phases are observed, but the type of collective mo-
tion that emerges depends on the boundary conditions that are present. In
the model, the underlying cause for the emergence of collective behavior is
a gradual build-up of velocity correlation that occurs each time two passive
particles collide, rather than active correlation of the velocities of two active,
observant particles [8]. Nevertheless, the resultant collective motion displays
considerable qualitative similarity to the collective motion in the VM model.
I do not believe the models have been quantitatively compared.

Modes of collective motion

The known modes of collective motion exhibited by minimalist models of
flocking behavior [5]:

1. a disordered phase

2. ordered planar motion

http://www.iop.org/EJ/mmedia/1367-2630/10/2/023036/
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3. ordered rotational motion

4. a critical phase (flocks of different sizes moving in different direction)

The disordered, planar ordered and critical phases are all captured by the
simplest VM, and. More complicated extensions of the VM with multiple
tuning parameters have found 2-D phase diagrams for these states [3, 9].
Additionally, it was shown that when a flock is in an ordered state and
the parameters controlling the phase of a flock are tuned, the flock exhibits
hysteresis [9].

The critical phase, which occurs when the noise level η approaches ηc, may
be most biologically relevant for studies of flocking birds or fish, because it is
the phase in which maximal information is transferred between particles [5].

3-D images of a real flock

Studies of flocking behavior (especially 3-D) are primarily theoretical and
computational, because data acquisition of flocks is difficult. However, the
group StarFlag in Rome has been making strides towards 3-D data acquisi-
tion of starling flocks containing thousands of birds [10]. The group faces a
variety of challenges, from capturing stereoscopic images of flocks, to tracking
the trajectory of each bird in the images. Preliminary results show that each
starling adjust its own direction to match its neighbors’, as with the cohe-
sive adaptation of the VM described above. Further, a splines behavior can
be can be described by attraction to its neighbors at intermediate distances
and repulsion at short distances. However, unlike most VM-like models, the
starlings do not appear to have a fixed distance at which they pay attention
to their neighbors. Instead, the groups state the birds watch their nearest
six or seven neighbors regardless of distance, and suggests that this gives the
flock enhanced cohesion.

Conclusions

Each minimalist model examined utilizes a local, noisy interaction between
particles. When these particles interact, whether by active steering or by
inelastic collision, their velocities receive minute correlations. The correla-
tions build up because particles moving in the same direction are likely to
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Figure 4: Capturing a flock in 3-D. (a,b) Stereoscopic photographs of a flock
of 1,246 starlings. (c-f) 3-D reconstruction generated from a,b of the flock
shown from four different perspectives. The perspective in b and d are the
same. Figure take from Ballerini et al. [10]
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interact repeatedly. If the particle density is sufficiently high, and the noise
sufficiently low, the particles will transition from a disordered phase to an
ordered phase, in which the velocity of the particles is aligned.

Information (conveyed through changing direction) is transferred through
particles most rapidly in the critical phase, where different sized aggregates
of correlated particles move in different directions [5]. Sonar observations of
anchovy schools, which depict waves that propagate quickly (more than an
order of magnitude faster than the average velocity of the school) through the
school in response to sea-lion attacks [4]. Thus, critical phase may pertain
to flocks that have formed to avoid predation.

Flocking stands out as a relatively simple example of collective behavior,
that may shed some understanding on other more challenging, but more
general issues in collective behavior. Human beings are extremely social
animals that take part in networks of collective behavior that span the globe,
typically without individual awareness. Understanding the nature of large
scale collective behavior has applications in many fields, including economics,
many branches of the social sciences, and of course in biological and physical
sciences.
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