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The Physics of Traffic Jams: Emergent Properties of Vehicular 
Congestion 
 
 
The application of methodology from statistical physics to the flow of vehicles on public roadways challenges the 
standard physical notion of a “particle”.  However, while the individual driver, is macroscopic, unique, and 
possessing free will, the character of the overall flow of traffic can be captured by  
”microscopic” models similar to those standard in physics.  “Car following” models and others such as the 
cellular automata (CA) and hydrodynamic models can capture both the phenomena observed by traffic 
engineers and the experience of being in traffic.  These models explore the observed phase transition between 
free-flowing and congested states of traffic. 
 
 
 
 
 
 
 
 
 
 



 

Introduction 
 
Whenever one travels on a public road one enters into an enormous, complex system 
which labors to facilitate and coordinate the journeys of millions of independent, 
unpredictable drivers.  The roadways have evolved through a mix of uncoordinated 
evolution and central planning and while they perform adequately, they are neither fully 
optimized nor fully understood.  The casual driver is left to ponder many of the mysteries 
of the highway, not the least of which is the origin of the traffic jam that so 
inconveniences him. 
 
Highways are altered every day, augmented by new lanes and ramps.  Traffic researchers 
note that transportation costs account for around 15% of the United States Gross National 
Product [1], implying a substantial economic benefit to even minimal improvements in 
highway planning.  Determining the manner in which to improve throughput (as well as 
other factors, such as safety) is a worthy and practical problem.  It is also a fascinating 
one. 
 
Traffic systems can include vast networks of interlocking roads controlled by traffic 
lights and other time-dependent effects.  It is easy to imagine complex traffic flow 
patterns found on such roads.  However, as we shall see, even highways far from any 
interchanges or obstacles can exhibit complicated emergent behavior.  We shall see that 
as more cars enter the roadway traffic flow undergoes a phase shift between distinct 
modes.  Traffic jams occur spontaneously, blossoming into existence and evolving in 
time and space before gradually dying out.  The underlying order and structure common 
to all highways shines through the individual peculiarities of traffic conditions. 
 
 
Experimental Studies 
 

Techniques 
 

The study of traffic patterns is an observational, rather than an experimental science.   
Researchers cannot control the traffic flow, they can merely choose when and where 
to observe it.   

 
Aerial Photography 
 
Aerial photographs can be used to plot the actual trajectories of cars.  The 
following diagram (modified) is owed to Trieterer [2]: 
 
 



  
 
Lines trace the path of single vehicles through space and time.  Steep lines 
correspond to low speeds.  We can see a collection of such low speeds in the 
middle of the diagram, indicating a traffic jam.  We use the phrase “traffic jam” 
here to indicate a state of traffic in which vehicles travel very slowly due to 
congestion.  We see that after developing spontaneously, the jam rapidly widens 
as many vehicles slow suddenly.  It gradually narrows as it progresses backwards 
or “upstream” (that is, against the flow of traffic) along the highway, eventually 
dissipating altogether.  Trieterer’s study was the first to demonstrate that traffic 
jams occurred spontaneously. 

 
Induction Loop Detectors 

 
Trajectories are useful for following the flow of individual cars, but do not 
characterize the system as a whole.  Researchers characterize traffic by its 
behavior at a given point on the road, rather than following cars.  There are a 
variety of measurements which could be used to describe the highway.  For 
example, an individual driver might well be most aware of his velocity and the 
distance between his vehicle and the next, his headway.  A number of valid 
choices exist, but researchers generally make use of traffic’s “fundamental 
diagram”: 
 

Figure 1 
Trajectories of cars 
traveling along a 
highway, taken via 
aerial photography.  
Each line represents 
the path of a single 
car.  Steep vertical 
lines indicate the slow 
movement 
characteristic of traffic 
jams. 



 
 
 
The density is the number of vehicles per length of highway.  The flux is the 
number of vehicles which pass a given point on the highway per unit time.  The 
points describe the state of a section of highway at subsequent times.  At low 
vehicle densities, we have the “free traffic” regime, in which vehicles do not 
interact, and flux increases linearly with density.  At high densities, vehicles 
reduce speed significantly as it becomes impossible to coordinate a smooth flow 
of traffic, leading to a reduction in flux even as density increases.  This 
“congested traffic” region is significantly more complicated than free flow, 
reflected in a much greater spread of values in the experimental measurements in 
this region.  In order to analyze the behavior of the transition between the free-
flowing and congested phases, it becomes necessary to develop a theoretical 
model.  Experimental data in the transition region is unclear and often seems to 
depend heavily on the particular highway observed.  As we shall see, indirect 
observations do provide persuasive evidence for the characterization of the flow. 
 
In generating fundamental diagrams and other tools of analysis, physicists use 
data taken from inductance loop detectors.  These detectors can detect single cars 
as they pass, although typically data is subsequently time-averaged.  Induction 
loops can measure both the time of crossing and the vehicle’s speed.   

Figure 2 
Data from a simulation [3] 
depict the transition from free to 
congested traffic.  The 
simulation predicts a sharp 
transition to a congested phase.  
Real world data (bottom) drawn 
from induction loops placed on 
German highways [4] realize a 
similar fundamental diagram.  
The black lines show time 
evolution between congested 
points, each of which represents 
a time average over a few 
minutes.  Note that the spread of 
values in the congested range is 
owed not to measurement error, 
but to a wide range of observed 
fluxes at a given density.  This 
spread, characteristic of real 
world fundamental diagrams 
obscures the nature of the phase 
transition observed. 



 
 
 

 
 
Figure 3 This figure originally appeared in a paper by F. L. Hall [5], 
collected in [6].  It shows the placement of induction loop detectors placed around 
freeway on- and off-ramps.  Loop detectors count cars as they pass, as well as 
measuring their speeds. 
 
 

 
Observed Phases of Traffic 

 
Experimental observations show three distinct phases of traffic on highways: free 
flow, synchronized flow, and traffic jams.  Experimental observations allow the 
characterization of each of these states, as well as the phase transitions between them. 
 

Synchronized flow 
 

A study by Rehborn and Kerner [4] shows that as traffic density increases traffic 
enters a state of synchronized flow.  Even in the absence of outright traffic jams, 
regions of synchronized flow are sufficient to decrease the flux as density 
increases.  Along with free traffic flow and jams, states of synchronized flow 
suffice to characterize all commonly observed traffic patterns. 
 
In synchronized flow, vehicles move substantially slower than free flow.  In 
Kerner and Rehborn’s observations, synchronized flow occurred at around 50 
km/hr, while the same highway saw 90 km/hr average speeds in free flow.  
Another feature of synchronized flow is the ambiguous effects on flux of greater 
vehicular density.  This is reflected in Figure 2, where the synchronized flow 
region displays a much greater spread of data points than does the free flowing 
phase.  Based upon their observations, Kerner and Rehborn identified three 
distinct types of synchronized flow: 
 
1) Stationary, homogenous flow.  These states displayed uniform flow which 
remained for as long as a few minutes. 
 



2) Density waves.  In these states, vehicle velocity was nearly constant, but waves 
in flux (and therefore density) were observed propagating through the line of cars.  
Distinct, often uncorrelated waves were observed in separate lanes. 
 
3) Essentially nonstationary and inhomogenous flow.  In these states no clear 
pattern emerges, although there is no reason to believe that density waves are not 
present. 
 
All three types of synchronized flow were associated with sets of data points that 
covered a wide spread over the fundamental diagram.  That is, no type of 
synchronized flow was found which showed a deterministic relationship between 
density and flux.  This seems to indicate that the fundamental diagram is not in 
fact capable of characterizing traffic, but rather that the flux of vehicles depends 
upon their history and/or random processes, in addition to the traffic structure’s 
density. 

 
Traffic Jams 

 
 

 
 

In addition to their characterization of synchronized flow, Kerner and Rehborn 
observed many traffic jams.  Traffic jams constitute a third phase of traffic, whose 
chief identifying feature is a drastically reduced velocity.  While jams can occur due 
to some external effect, such as a narrowed roadway or an increase in flux 
surrounding an on-ramp, jams are observed appearing and disappearing 
spontaneously on open highway.  They are generated by effects from within the 
traffic flow itself. 
 
Above, velocity and flux are plotted as functions of time at three different detectors.  
The different lines on a graph correspond to the three different lanes.  D9 is 

Figure 4 
Kerner and Rehborn 
show the time 
evolution of velocity 
and flux through 
three detectors on a 
German highway.  
The severe dips 
indicate a traffic 
jam, moving 
upstream through the 
three detectors as 
time progresses.  



“upstream” from D11 and D11 is upstream from D14.  We see that the jam, 
characterized by drastically reduced speeds, broadens and moves backwards, against 
the flow of traffic.  It also leads to a synchronization of velocities between lanes. 

 
Phase Transitions 
 
In a separate study, Kerner and Rehborn [7] analyzed the transitions between the 
phases of traffic they observed.  Using induction loop detectors, generally placed 
near highway on- and off-ramps, they found that free flowing traffic could 
transition to either synchronized flow or jams, depending on “small peculiarities” 
of the particular free flow configuration that they were unable to isolate.   
 
They conclude that phase transitions are initiated by “critical localized 
perturbations of finite amplitude” which occur spontaneously in free flowing 
traffic of sufficiently high density.  To support this theory, which originates in an 
earlier study [8], they observe that a spike in the flux of vehicles in an on-ramp 
initiates a phase transition immediately downstream of the ramp.  Deterministic 
effects such as these suggest that perturbations in open stretches of highway, 
when they arise, can lead similarly to phase transitions.  Of course, it is virtually 
impossible to directly observe a perturbation, perhaps a single car lightly 
decelerating, with loop detectors. 
 
Kerner and Rehborn’s research also addresses a central issue of traffic phase 
transition analysis: the order of the transition.  They found that immediately 
following a transition to a congested phase of traffic that the density upstream 
became too great to support a return to free-flowing traffic.  They concluded that 
phase transitions from free flow to either synchronized flow or traffic jams were 
first order. 
 

 
 
 
 
 

Figure 5 
Kerner and Rehborn [7] show that 
phase transitions from free flowing 
to synchronized traffic are first 
order.  The transition (points         
1-2 ) does not reverse itself, but 
evolves broadly in the synchronized 
regime before returning much later 
to free flow (points 3-4).  The black 
lines connecting points delineate 
time evolution.



Modeling and Simulation 
 
Physics successfully describes the universe from length scales of galaxies to those of 
quarks, and beyond.  However, the human scale possesses a factor unique in physics: 
intelligence.  Applying physics methodology to describing traffic systems, whose 
constituent parts possess intelligence, is a new frontier. 
 
Isaac Asimov, in one of his classic works of fiction [9], proposed psychohistory: a 
science of precise predictions of collective human behavior made through computer 
modeling of macroscopic effects, in direct analogy with the ability of thermodynamics to 
predict the macroscopic behaviors of systems without microscopically describing each 
constituent particle.  Decades later, physicists have proven capable of predicting quite 
accurately the behavior of human beings (or at least those driving on a highway) by 
modeling them as particles, volumes of fluid, and harmonic oscillators. 
 
Vehicular traffic is a complicated non-equilibrium statistical problem, and many different 
models have been proposed to study it.  Microscopic models of traffic are those in which 
individual vehicles are treated as particles, each with their own rules of motion.  For 
example, a Cellular Automata (CA) model might hold that vehicles travel on a discrete 
lattice of spatial points over discrete points in time.  In the simplest model, each round 
vehicles merely advance a single site if the site in front of them is unoccupied, and 
remain stationary if it is not. 
 

Simulation of Jams 
 

There are a number of ways can be observed through simulations.  We present a 1995 
study from Nagel and Paczuski [1]. 
 
Nagel and Paczuski use a discrete time and space particle hopping model based on an 
earlier model proposed by Nagel and Schreckenberg [10].  Each section of highway is 
either unoccupied or occupied by a car traveling at an integer velocity between 0 and 
some vmax.  Cars traveling at less than vmax and with more than vmax empty cells in 
front of them have room to accelerate, and increase their speed by one with 
probability ½, otherwise maintaining their speed.  Cars with fewer empty cells in 
front of them than their velocity decelerate.  Again with odds of ½ they decelerate 
more than necessary, occupying one of the cells between their current position and 
the cell directly behind the leading car.  Additionally, even vehicles with no cars in 
front of them occasionally decelerate, initiating spontaneous jams as car after car 
behind them decelerates. 
 
This model makes use of acceleration noise, in which some drivers over- or under-
accelerate randomly to observe traffic jams.  This is consistent with empirical 
observations of driver behavior, such as those of Kerner and Rehborn [7].  In this 
model, acceleration noise gives rise not only to jams, but to the emergence of a new 
critical point.  The acceleration noise causes flux to drop off from its maximum at a 



density well below that at which a deterministic model would still be in the free flow 
regime.   
 
In fact, the simulation reveals that this maximal flux is achieved by the cars exiting a 
long traffic jam, as they eventually accelerate and spread out.  When traffic density is 
increased beyond the point achieved by cars exiting a long jam, traffic jams emerge 
which have an infinite lifetime.  Thus, after these persistent jams flux is again that of 
the output from a long jam. 
 

  
 
Figure 5 Left: Trajectories of cars in Nagel’s model.  Dark areas (steeply-sloped 
trajectories) correspond to traffic jams.  Nagel’s simulation captures traffic jam 
behavior consistent with experimental results: jams occur spontaneously and widen 
and drift “upstream” before dissipating. 
Right: The probability distribution, P(t) of a traffic jam lifetime t follows a power law 
scaling, continuing to the times on the order of the length of the simulation.  The 
exponent is measured from the simulation to be -1.5 +/- .01.  
 
The authors conclude from their simulation that technology that improves driver 
control, such as cruise control (which automatically maintains a vehicle’s speed) will 
not necessarily improve the flux along highways.  While drivers will be able to 
maintain high speeds even at higher densities, these increased densities will 
eventually augment the effects of perturbations, leading to more large traffic jams 
which completely offset any advantages. 

 
 

Optimal Velocity Models: 
 

CA models satisfactorily recover many of the behaviors observed in traffic but rely 
on a somewhat obscure model of individual driver behavior.  Optimal velocity 
models, first proposed by Newell in 1961 [11] begin from a more intuitive model of 
individual driver behavior. 
 



In optimal velocity models, both space and time are continuous, and the velocity a 
vehicle chooses is based purely on the distance (headway) by which the vehicle in 
front exceeds it, or rather exceeded it some time ago: 
 

 
 
That is, the velocity of the jth vehicle is determined by a function V of its headway 
only.  It is evaluated at a time retarded by τ, modeling a driver’s finite reaction time.  
For τ sufficiently small, we may expand the governing equation to arrive at an 
acceleration equation: 
 

 
 
The function V, which describes the velocity a driver chooses for a given headway, is 
somewhat arbitrary, but presumably vanishes at some nonnegative headway, and 
approaches the free velocity speed asymptotically as headway goes to infinity.  The 
inverse delay time describes the sensitivity of the system. 
 
This result shows that in the optimal velocity model vehicles behave as coupled 
harmonic oscillators.  Extensions of the optimal velocity model which take into 
account not merely the position of the leading car but the next leading car or the 
following car increase the complexity with which car positions couple, and are 
commonly employed [3].  A numerical analysis of three cars with simple velocity 
profiles yields the following trajectories: 
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Here, a car traveling at a constant velocity (as one with no car leading does in this 
model) is trailed by two cars with successively higher optimal velocities.  These 
vehicles accelerate/decelerate until a delay time has passed since they have gone 

Figure 6 
The headways 
of two cars in 
an optimal 
velocity model.  
The delay time 
leads to 
oscillatory 
behavior 
before an 
equilibrium is 
achieved. 
 



above or below their following distance.  It is the delay time that leads to the 
oscillatory behavior for sufficiently close cars.  It can also lead to collisions (headway 
= 0) if cars adopt sufficiently reckless velocity profiles.  Eventually, oscillations are 
damped, and the cars proceed at the optimal velocity of the lead car.  These cars 
plotted here have identical velocity profiles except for their optimal velocities.  In real 
traffic, cars have substantially varying optimal velocity formulae and delay times, 
creating a complicated computer model. 

 
Linear Stability Analysis 
 
Beyond a stochastic distribution of driver profiles, noise enters into the system as 
vehicles fail to follow strict deterministic equations of motion.  Drivers can 
temporarily misperceive their headway or see their delay time fluctuate stochastically.  
This noise can give rise to fluctuations in the vehicle flux even from a state of free 
traffic flow. 
 
However, even in the absence of stochastic processes, linear stability analysis [3] 
reveals that uniform states (that is, evenly spaced vehicles traveling at a constant, 
uniform velocity) are unstable to density waves: 
 

 
The exact form of the neutral stability curve depends on the functional relationship 
between headway and velocity, but general features are apparent.  Low delay times 
aid stability, and for sufficiently high delay times there exists a headway (which 
corresponds directly to a density) for which a state of uniform flow becomes unstable 
and density waves are produced.  Nagatani shows that these density waves are back-
propagating and composed of alternating regions of congested traffic and free traffic.  
This accounts for the reduction of flux around the critical density.  Indeed, Nagatani’s 
linear stability analysis recovers the same critical point as the flux-maximizing 
density. 

 
 
 
 

Figure 7: 
The stability diagram for 
traffic flow in the optimal 
velocity model. 
The critical point 
corresponds to the headway 
which maximizes flux.  



Conclusion: 
 
Describing highway traffic is a complicated, rich application of non-equilibrium 
statistical physics.  Experimental observations and modeling have successfully 
characterized the critical behavior and self-ordering of vehicular traffic, including the 
emergence of spontaneous traffic jams, decisively demonstrating the relevance of 
physical technique to traffic systems.  Traffic systems are a rich area of ongoing physical 
research. 
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