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Abstract

A spin glass is a type of magnetic ordering that can emerge, most
transparently, when a system is both frustrated and has quenched
disorder. This paper will review some of the basics of such systems,
and then touch on some of the experimental results that served as
a guide for the theory. In exploring the theory it will focus on one
particular framework, the replica approach, that has been used to
study such systems, and will briefly examine how that framework is
being expanded to look not only at spin but also structural glasses.

1 Introduction

Spin glasses are a fascinating class of magnetic materials with properties
quite different from those of familiar ferro- and anit-ferro-magnets. In a spin
glass the magnetic moments are frozen into some (apparently) equilibrium
orientations, but without any long-range order. This feature, frozen-in ori-
entation without long-range order, makes an instant analogy with structural
glasses, which themselves have molecules seemingly in equilibrium positions
but without any sort of crystalline ordering. In recent years links between
spin-glasses and structural glasses have been made, and the potential for spin
glass research to shed light on the theory of structural glasses is one of the
exciting developments of the field.

In any event, an early theory of spin glasses was proposed by Edwards
and Anderson [1], in which they identified two key features for a successful
theory of spin glass: quenched disorder and frustration. Note that, in fact,
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quenched disorder turns out not to be strictly necessary in some spin glass
theories (see, for instance, [2]). Indeed, this is one of the reasons the study of
spin glasses has proven useful in answering questions about structural glasses,
which do not themselves have quenched disorder. For introductory purposes,
though, let us consider only the most basic class of spin glasses and explain
the above two properties.

Consider, then, a simple Ising spin model coupled to an external field, h:

H = −
∑
i

hSi −
∑
i,j

JijSiSj. (1)

The key feature here is that the coupling strength between spins i and j, Jij,
are randomly distributed variables. ‘Quenched disorder’ refers to the fact
that the Jij’s are chosen randomly (hence ‘disordered’), but that once chosen
the values are fixed for purposes of further calculation (hence ‘quenched’).
‘Frustration’ refers to the fact that spin glasses do not have a unique, non-
degenerate ground state, but instead occupy one of a vast number of meta-
stable states, all of approximately the same energy, that are separated by
large free energy barriers. This comes about because the disorder in the
spin-coupling parameter means that often a single spin will be unable to
simultaneously minimize the energy of all its interactions, and hence is ‘frus-
trated’ in its attempt to reach a true ground state.

To more clearly see how frustration can arise, even in simple systems,
consider the four-spin Ising set-up in the absence of an external field shown
in Figure 1. If we take J13 = J34 = J24 = 1 and J12 = −1 we can instantly
see the problem: for a given spin direction for Spin 1, Spins 2 and 3 will want
to be oppositely aligned from each other to minimize their interaction energy
with the first spin. But now Spin 4 (and hence the system) is frustrated, as
it simply cannot minimize its energy with respect to be Spin 2 and Spin 3
simultaneously.

The remainder of this paper will be organized as follows. Section 2 will
give a brief accounting of some of the experimental results that fueled interest
in spin glass phenomena, with particular attention paid to phenomena that
reinforce the importance of frustration and quenched disorder for model spin-
glass sytems. Section 3 will return to theoretical aspects of the problem,
defining an appropriate order parameter for the system and focusing on the
replica approach to solving the problem. Section 4 will conclude the paper
with a short look at how ideas from spin-glass theory have been generalized
to try to answer questions about structural glasses.
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Figure 1: Four Ising spins with individual nearest-neighbor coupling
strengths

2 Experimental results

In the seventies and early eighties there was some dispute as to exactly what
properties experimentally characterized a spin glass [3], and here we will
briefly go over some of what are now accepted as the (near-) universal fea-
tures of spin-glass systems. As mentioned earlier, by definition there must
be no observed periodic long-range order in the magnetization. In addition,
the ‘frozen-in’ magnetic moments of the system leads to the experimental
signature of a cusp or peak in the frequency-dependent magnetic suscepti-
bility. Such a cusp was first observed by Cannella and Mydosh in the early
seventies [4]. A typical plot is shown in Figure 2, where both the in-phase
(χ′) and out-of-phase (χ′′) components of the complex magnetic susceptibil-
ity of a gold-manganese alloy have been measured and shown to be peaked
at what the authors identify as the freezing temperature of the system.

Other striking experimental signatures of spin-glass systems are those
of remanence and hysteresis. Put simply, remanence in the case of spin
glasses just means that, after a field-induced magnetization has been created
in the spin-glass system and the external field switched off, there remains
a remanent magnetic field with a very slow decay time (i.e. a remanent
field is still observable after a macroscopic amount of time is allowed to
pass). A linked but perhaps even more vivid effect is the dependence of the
magnetization on the ‘magnetic history’ of the sample. One common way to
study this is to consider two different phase-space paths. In the first path
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Figure 2: Temperature dependence of the susceptibility χ′ and χ′′ for AuMn
in zero static external field. From reference [5]

the sample is cooled in the absence of an external field to below the freezing
temperature, and then the response of the system to a particular external
field is studied. Alternately, the system can be studied by starting above
the freezing temperature, cooling it down in the presence of an external field
to well below the freezing temperature, switching off the external field, and
then studying the response of the system to another particular external field.

Figure 2 gives a clear illustration of these phenomena: there is a remanent
magnetization of the system (made clear by the different starting values of
the system magnetization depending on whether the system was cooled in
the presense of a magnetic field or not), and the hysteresis seen makes the
importance of the ‘magnetic history’ of the spin glass equally apparent.

There are many other experimental features of spin-glass systems that
deserve mention and are of interest - deviation from the Curie-Weiss law even
far above the freezing temperature, broadening of the peak of the specific heat
curve above the freezing temperature, the lack of a singularity in the zero-
field specific heat even at the freezing temperature (important in that this is
in direct contrast with the predictions of mean-field theoretic predictions) -
but these must be passed over in the interest of brevity. But, the importance
of the observation of these effects for the theoretic development of spin glasses
is clear: the cusp in the frequency-dependent susceptibility leads to putting
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Figure 3: Magnetization, σ, vs. applied field, H, for quenched Cu75Mn25 at
30 K after zero-field cooling (circles) and after Hc = 12.7 kOe (triangles).
Filled symbols represent data taken in ascending fields, and empty symbols
represent data taken in descending fields. From reference [6]

quenched disorder into the models, and the remanence and history-dependent
effects calls to mind a situation where there are many minima in the free
energy landscape for the system to settle into, but with the minima separated
by rather large barriers. Thus, we see the importance of adding frustration
to any spin-glass model.

3 Theory: the replica approach

Above we saw the importance of including quenched disorder in a model
of a spin-glass system, but in many ways this is also the source of much
of the theoretical difficulty of the problem. Put simply, we know from our
experience with statistical mechanics that in problems with randomness we
want to perform an average over that randomness as soon as permissible.
However, since for quenched disorder (and, for definiteness, we’ll keep in
mind the Hamiltonian of Equation 1) we randomize the interactions at the
outset and fix them thermodynamically, we can only perform the average on
physical observables (the free energy, for example) instead of on the partition
function - and, of course, averaging the log of Z is a much thornier problem
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than just averaging Z itself.
So, initially, we can think of the replica approach as a formal mathemat-

ical trick to get around this problem of averaging the log of Z. To do so, we
note that the taylor expansion of the function xn near n = 0 is given by

xn = 1 + n log x+O(x2), (2)

so, taking the partition function as x above, we can write

logZ = lim
n→0

Zn − 1

n
. (3)

We will think of Zn as being the product Zn =
∏n

a=1 Za, where a is a label
denoting n identical ‘replicas’ of the system, and our problem of averaging
logZ has been replaced by averaging Zn, albeit in the somewhat unintuitive
limit where the number of replicas goes to zero.

The effect of averaging over Zn is to introduce interactions between the
replicas a when n is an integer, an effect which was exploited by Sherrington
and Kirkpatrick (S-K) in [7] for the case of a Hamiltonian like Equation 1
where the interaction strengths Jij were distributed as a gaussian. They were
able to derive an expression for the free energy per spin using two addition
mathematical maneuvers: the interchange of the order of the thermodynamic
(N → ∞) and replica (n → 0) limits, followed by the analytic continuation
of the results of an integral that could be evaluated for integer n ≥ 2 to the
case for real n→ 0.

Both of these moves seem less than fully justified, but the authors were
able to derive the following expression:

f = kT

(
(
J0m

2

2kT
− J

2
(1− q2)

(2kT )2
− 1√

2π

∫
dze−z

2/2 log(2 cosh Ξ)

)
, (4)

where J0 and J are related to the cumulant expansion of the distribution of
the Jij, Ξ is related to those cumulants, m, q, and the external field, and
(most importantly for us) m = 〈〈Si〉〉d and q = 〈〈S2

i 〉〉d (here unadorned
angled brackets indicate a thermal average, and those with a d subscript
indicate an average over the spatial disorder). We see in m and q, then, our
order parameter: if both m and q are nonzero the system is in a ferromagnetic
phase, and if q 6= 0 while m vanishes we see the emergence of a spin-glass
phase (whereas if both are zero the system is in a paramagnetic state). We
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pause here to note an interesting feature of the transition between zero and
non-zero values of the order parameter: while the phase transition itself is
second order in a thermodynamic sense (having a continuous change in the
free energy and a jump in the specific heat), the order parameter itself jumps
discontinuously from zero to some non-zero value upon entering the spin-glass
phase [8].

The theory outlined here (the reader is invited to see [7] for the derivation
and a much more thorough discussion) performs fairly well when compared to
experiment for high temperatures, and in fact also predicts the freezing tem-
perature in good agreement with experiment. At low temperatures, though,
serious problems emerge; as just one example, in the zero-external-field, zero-
temperature limit this theory actually predicts a negative entropy. Clearly
something has gone wrong! In addition to the technical mathematical issues
(the two maneuvers mentioned above) that lead to such results, there is also
something a bit unsatisfying about the above presentation: viewing the repli-
cas as a mathematical trick instead of reflecting some sort of more physical
idea feels not very compelling. Or, viewed through the lens of what was
discussed in class this semester, we know that ordered states are typically
the result of a broken symmetry, but here it is not at all clear what (if any!)
symmetry we have broken to arrive in the ordered spin glass phase from the
ferromagnetic phase. To make the idea of broken symmetry more apparent,
we have to, at least briefly, look at Parisi’s version of the replica approach.

To begin, we will have to define a new order parameter, albeit one a bit
more abstract than the q we defined above. Loosely following Parisi in [9],
we consider the n × n matrix Qα,β

i = 〈σαi σ
β
i 〉. That is, the average of the

product of the spins on the same site but across different replicas. In our
earlier discussion, where all the replicas were identical, this is not a terribly
interesting matrix, as all of its elements would be identical, enforcing Qαβ = q
independently of α and β. At this point it is a purely trivial statement to
say that, in such a case, the matrix Q is symmetric under a relabeling of the
replicas (or, equivalently, under a permutation of the replicas).

The insight allowing further progress with the replica approach, though, is
the recognition that the free energy (and other observables) can be obtained
under different assumptions about the structure of Q. We can define, for
instance, an iterative procedure for constructing the matrix Q, whereby (now
using the conventions from the cosmetically different version of the theory
presented in [10]) at each iteration blocks of ever-smaller size on the diagonal
have their elements replaced by a different value of q, while the off-diagonal
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blocks are left untouched. A particularly simple example showing two such
steps is shown in Figure 3. Each iteration of this proceedure is refered to
as a level (the kth-level after k steps) of replica symmetry breaking, as each
iteration further reduces the set of permutations we can still make to the
replicas while leaving the matrix Q invariant. And indeed, as the name
suggests, this is precisely the symmetry that is broken in entering the ordered
spin-glass phase.

q0 q0 q0 q0
q0 q0 q0 q0
q0 q0 q0 q0
q0 q0 q0 q0

→


q1 q1 q0 q0
q1 q1 q0 q0
q0 q0 q1 q1
q0 q0 q1 q1

→


q2 q1 q0 q0
q1 q2 q0 q0
q0 q0 q2 q1
q0 q0 q1 q2


Figure 4: Illustration of two levels of replica symmetry breaking for n = 4

Now, this proceedure still has its fair share of mathematical subtleties.
For instance, the proceedure outlined above makes perfect sense for integer
n and finite k, but in the final version of the theory we not only make an
analytic continuation to the n → 0 limit, but simultaneously let k → ∞.
The result of this analytic continuation is to end with not a single order
parameter as in the S-K theory, but rather an order parameter Q(x) that
is a continuous function on the domain [0, 1] (although we note that Q(x)
cannot be computed exactly except quite close to the freezing temperature;
in other temperature regimes it must be approximately studied). Our earlier
order parameter q (or, rather, a simple variation of it), corresponding to the
k = 0, fully permutation-symmetric version of this proceedure, can be shown
to be related to this new order parameter quite simply: q = Q(1).

In terms of comparing the results with those of S-K replica theory, it
is more that the two approaches are complementary (in a sense). In the
high-temperature regime the predictions of S-K are still valid, and indeed
for such temperatures replica-permutation symmetry is not broken, so the
system is S-K solution is a stable one. Below a certain temperature (one
that depends on the external field), though, this generalized replica approach
predicts that the replica-symmetric solution is unstable to replica-symmetry-
breaking solutions. It turns out that this more general theory corrects for
many of the low-temperature shortcomings of the S-K theory; for instance,
it correctly predicts a zero instead of negative entropy at zero temperature.
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4 Conclusion

The various applications and predictions of the replica approach are so varied
that in a paper of this length there is hardly time to do it any justice, let alone
properly address the large class of other approaches to the spin glass problem.
So, for this conclusion I would like to focus on just one particularly exciting
way the replica approach has been extended and talk about its relation to
structural glasses.

A structural glass results when a fluid is cooled sufficiently quickly, and
the glassy state is characterized by a freezing-in of local structures that pro-
hibit easy movement of the particles, breaking the ergodicity of the system.
An intuitive, physical order parameter (like q, and not the matrix Q, in
the preceeding section) can be thought of as follows: let us define the ‘cage
length’ to be a length scale related to the amount of space a given particle
can explore in some appropriately chosen time scale. At high temperatures,
when the system is in a liquid state, the particles are not constrained and
can effectively explore the entire space of the system, but as the temperature
is lowered and local ‘cage’ structures emerge, the amount of space explored
ceases to scale with the volume of the system. So, we can define a physical
order parameter by the inverse of the cage length: it is zero for the liquid,
and takes a non-zero value in the glassy state. As it turns out, the transi-
tion to the glassy state shares a common feature with the transition to the
spin-glass state, in that it is thermodynamically a second-order transtion,
but this physical order parameter jumps discontinuously to some finite value
at the transition [11]. This observation, along with other similarities (for
instance, the fact that glassy systems exhibit the same frustrated state of
affairs, with many equivalent free energy minima separated by high barri-
ers), helped fuel interest in using the replica approach from mean-field spin
glasses and applying it to structural glasses.

However, the lack of quenched disorder in structural glasses - where the
randomness caused by local packing arrangements is clearly not a thermo-
dynamically fixed quantity - was for a long time an impediment to using the
replica approach [8]. As we saw earlier the entire purpose of introducing the
replica formalism was to try to deal with averaging the log of the partition
function, but with no quenched disorder there seems to be no a priori reason
to delay averaging over the randomness of the glass phase sooner than at
the level of physical observables. The heart of the issue, though, is that it
is hard to describe the amorphous structures of glass as anything other than
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out-of-equilibrium effects, which would preclude the transition to the glassy
state from being viewed as a legitimate phase transition. Thus, replicas (of-
ten called ‘clones’ in this context) are introduced not as a way to deal with
quenched disorder but rather as a way to describe the glass state as a true
equilibrium state [12].

To get a sense of the clone or replica formalism for this problem, I will
sketch some of the barest details leading to the order parameter used in
calculation (just as in Parisi’s version of the replica approach, where the
order parameter Q that he considered was substantially different from but
still able to be related to the physical order parameter q, there is similarly
a connection between what I will soon describe and the ‘inverse-cage-length’
order parameter mentioned above). So, following [13] in the remainder of
this paragraph, we look at the case where we have two clones of the system.
The hamiltonian we use will be

H =
∑

i≤i≤j≤N

(v(xi − xj) + v(yi − yj)) + ε
∑

i, jw(xi − yi). (5)

So, we have two copies of the system, with particle coordinates xi and yi,
where the particles have some potential interactions (typically a hard sphere
or a Lennard-Jones potential), and there is some weak short-ranged attractive
potential, w, between the two clones. The exact form of the potential is not
terribly relevant, as we will ultimately take the ε → 0 limit. With this as
our starting point, we can define a new order parameter g that, like Q, is a
continuous function, by

gxy(r) = lim
ε→0

lim
n→∞

1

ρN

∑
i,j

〈δ(xi − yj − r)〉, (6)

for ρ the density of particles and N the number of particles. This order
parameter has the feature that for the liquid state it is uniformly one, but
in the glassy state it discontinuously acquires more intricate structure. We
can again ask what symmetry is broken in the new ordered phase, just as
for the spin glass system. Well, in the ε → 0 limit and assuming periodic
boundary conditions, gxy(r) is invariant with respect to a global translation
of the x particles relative to the y for the high-temperature liquid phase, but
this symmetry is not present in the glassy state [8].

This cloning proceedure can be intuitively extended to any integer num-
ber m of clones, and then to get predictions of the theory the results are
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analytically continued to m → 1. Remember, since we are not using the
clones to compute a quenched-disorder average, there is no need to analyt-
ically continue to the zero-clone limit. Instead, the idea is that the weak
attraction we put in between the clones encourages the clones to be in the
same equilibrium amorphous state, and that when the temperature is low
enough and the theory predicts the emergence of the glassy state, such a
lining up of the clones exists even in the ε→ 0 limit, that is, in the absence
of coupling between the clones.

In this paper we have seen the power of the replica approach in dealing
with frustrated systems in the presence of quenched disorder, and we have
briefly looked at an extension of the approach to systems without quenched
disorder. It has been speculated (e.g. in [14]) that this replica/clone gener-
alization might apply to a wide class of ‘entropy crisis’ models of spin and
structural glasses - so called after a seeming paradox uncovered by Kauzman
in [15] where there seems to be a finite, non-zero temperature where a mea-
sure of the configurational entropy of a glassy system drops below that of a
perfect crystal at zero temperature (slightly reminiscent but, I think, only
superficially connected with the negative entropy that arises at zero tempera-
ture in the S-K model). However, neither this statement nor the whole model
of an entropy-crisis-driven approach to the problem of structural glasses is
without controversy, and indeed the field remains an area of active research.
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