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Abstract 
 
Optical lattice formed by counter propagating laser beams provides us a new platform to study 
condensed matter physics. Cold atoms moving in an optical lattice could be described by Bose-
Hubbard Model. By controlling laser intensity, we could change interaction and tunneling 
strength at will. Thus, different quantum phases could occur in optical lattice. In this review, I 
will give an overview of different phases (i.e. Superfluid, Mott Insulating) in optical lattice. I will 
focus on the phase diagram and the characteristics of different phases.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction: 
Due to ac stack effect, atoms moving in optical fields will experience a potential, and the 
strength of potential is dependent on the strength of the local optical field. Thus, a three-
dimensional optical lattice potential could be formed by aligning three optical standing waves 
orthogonal to each other. In a typical experiment, each standing wave laser field is created by 
focusing a laser beam to a waist of about 100 𝜇𝜇𝜇𝜇 at the position of the condensate. A second lens 
and a mirror are then used to reflect the laser beam back onto itself, creating an interference 
pattern of standing optical wave. When the field strength of the three standing waves is the same, 
the three-dimensional optical lattice potential has the simple form [1]: 
 

𝑉𝑉0(𝒙𝒙) = 𝑉𝑉0(𝑠𝑠𝑠𝑠𝑠𝑠2(𝑘𝑘𝑘𝑘)+𝑠𝑠𝑠𝑠𝑠𝑠2(𝑘𝑘𝑘𝑘) + 𝑠𝑠𝑠𝑠𝑠𝑠2(𝑘𝑘𝑘𝑘)) 
 
with wave vector 𝑘𝑘 = 2𝜋𝜋/𝜆𝜆, 𝜆𝜆 is the wave length of the laser light, corresponding to a lattice 
period 𝑎𝑎 = 𝜆𝜆/2. 𝑉𝑉0 is the maximum depth of the optical lattice potential, which is proportional to 
the laser light intensity and the polarity of atoms. This depth is conveniently measured in units of 
recoil energy 𝐸𝐸𝑅𝑅 = ℏ2𝑘𝑘2/2𝜇𝜇. In the low temperature limit, this optical lattice potential could be 
approximated by a harmonic potential with trapping frequency 𝜈𝜈𝑅𝑅 ≈ (ℏ𝑘𝑘2 2𝜋𝜋𝜇𝜇⁄ )�𝑉𝑉0/𝐸𝐸𝑅𝑅. 
 
When the pair interaction is not taken into account, the motion of atoms in periodic lattice 
potential is well described within the band theory. This consists of vibrational motion within an 
individual well and tunneling between neighboring wells. At low enough temperatures, atoms 
will Bose condense and the condensate will be in a Superfluid state, where wave function 
exhibits long range coherence. In reality, there are repulsive pair interactions between atoms, and 
this may change the properties of the system dramatically depending on the strength of 
interaction. When the pair interaction strength is small compared to the tunneling strength, the 
condensate will remain in the superfluid state. A delocalized wave function will minimize the 
energy of the system and atoms could hop around freely. However, in the case of strong repulsive 
interactions and commensurate filling (each site has the same number of atoms), atoms will not 
be able to hop around freely as before. There will be a large energy cost for an atom to hop from 
one site to another due to the strong repulsive interaction between atoms (see Figure 1). Thus, the 
condensate will be in a mott-insulating state characterized by the existence of a gap for particle-
hole excitations and by the zero compressibility [2]. Thus, the competition between tunneling 
and repulsive interaction will result in different emergent quantum phases. Optical lattice is a 
great system to study such phenomenon, because the relative strength of tunneling and repulsive 
interaction could be tuned by changing the brightness of laser light. In fact, a superfluid to mott-
insulting quantum phase transition has been realized experimentally in 2002 [3].  

 
Figure 1: If the atom in site 1 hops to site 2, there will be an energy cost of U due to the repulsive interaction 
between two atoms in site 2 [3]. 



In this experiment, the superfluidity near the mott-insulating transition was inferred indirectly 
from coherence measurements. Since the observed excitation spectrum and atomic inference 
pattern did not change abruptly, the precise location of phase transition could not be determined. 
Later experiment extended the early work by studying stability of superfluid current as a function 
of momentum and lattice depth [5, 6]. The superfluid regime could be better characterized by 
observing a critical current for superfluid flow through the onset of dissipation. In this review, I 
will first introduce the Bose-Hubbard Model and the phase diagram of atoms in optical lattice. 
Then, the experiments on quantum phase transition from superfluid to mott-insulating will be 
introduced and compared. 
 
Bose-Hubbard Model for atoms moving in optical lattice: 
Cold atoms moving in periodic optical lattice potential could be described by Bose-Hubbard 
Model. The starting point is the Hamiltonian operator [1] 
 

𝐻𝐻 = ∫𝑑𝑑3 𝒙𝒙𝜓𝜓†(𝒙𝒙)�− ℏ2

2𝜇𝜇
∇2 + V0(𝒙𝒙) + VT(𝒙𝒙)�𝜓𝜓(𝒙𝒙) + 1
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4𝜋𝜋𝑎𝑎𝑠𝑠ℏ2

𝜇𝜇 ∫𝑑𝑑3 𝒙𝒙𝜓𝜓†(𝒙𝒙)𝜓𝜓†(𝒙𝒙)𝜓𝜓(𝒙𝒙)𝜓𝜓(𝒙𝒙) (1)

  
with 𝜓𝜓(𝒙𝒙) a boson field operator for atoms in a given internal atomic state, V0(𝐱𝐱) is the optical 
lattice potential, and VT(𝐱𝐱) is the slowly varying external harmonic tramping potential, e.g., a 
magnetic trap. In the low energy regime, the pair interaction between cold atoms could be 
described with a single s-wave scattering length 𝑎𝑎𝑠𝑠. This effective interaction is of contact type 
and isotropic with the form of 4𝜋𝜋𝑎𝑎𝑠𝑠ℏ2 𝜇𝜇⁄ . The single particle wave function in a periodic 
potential is given by Bloch wave function, and a proper recombination of Bloch wave function 
would yield a set of well localized Wannier functions.  In the cold atomic system, the energies 
involved in system dynamics are small compared to the excitation energies to the second band. 
So, we could assume there are no excitations to the second band. Thus we could expand our field 
operators in the set of Wannier functions formed only by first band Bloch wave functions. Then, 
field operator could be written as 𝜓𝜓(𝒙𝒙) = ∑ 𝑏𝑏𝑠𝑠𝑠𝑠 𝑤𝑤(𝒙𝒙 − 𝒙𝒙𝑠𝑠). Substitute this into equation (1), we 
have the following Bose-Hubbard Hamiltonian 
 

𝐻𝐻 = −𝐽𝐽∑ 𝑏𝑏𝑠𝑠
†𝑏𝑏𝑗𝑗<𝑠𝑠 ,𝑗𝑗> + ∑ 𝜖𝜖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 1

2
𝑈𝑈∑ 𝑠𝑠𝑠𝑠𝑠𝑠 (𝑠𝑠𝑠𝑠 − 1),                              (2) 

Where the operators 𝑠𝑠𝑠𝑠 = 𝑏𝑏𝑠𝑠
†𝑏𝑏𝑠𝑠  count the number of bosonic atoms at site i; the annihilation and 

creation operators obey canonical commutation relations �𝑏𝑏𝑠𝑠 , 𝑏𝑏𝑗𝑗 � = 𝛿𝛿𝑠𝑠𝑗𝑗 . The parameter 𝑈𝑈 =
4𝜋𝜋𝑎𝑎𝑠𝑠ℏ2 ∫𝑑𝑑3 𝒙𝒙|𝑤𝑤(𝒙𝒙)|4/m corresponds to the strength of the onsite repulsion of two atoms at site 
i. J = ∫𝑑𝑑3 𝒙𝒙𝑤𝑤∗(𝒙𝒙 − 𝒙𝒙𝑠𝑠) �−

ℏ2

2𝜇𝜇
∇2 + V0(𝐱𝐱)�𝑤𝑤�𝒙𝒙 − 𝒙𝒙𝑗𝑗 � is the hopping matrix between two sites i 

and j. < 𝑠𝑠, 𝑗𝑗 >  denotes the nearest neighbors. 𝜖𝜖𝑠𝑠 = ∫𝑑𝑑3 𝒙𝒙𝑉𝑉𝑇𝑇(𝒙𝒙)|𝑤𝑤(𝒙𝒙 − 𝒙𝒙𝑠𝑠)|2 ≈ 𝑉𝑉𝑇𝑇(𝒙𝒙𝑠𝑠)  is the 
energy offset of each lattice site. 
 
For a given optical potential, J and U could be evaluated numerically [1]. For the optical lattice 
potential given above, the Wannier function could be written as 𝑤𝑤(𝒙𝒙) = 𝑤𝑤(𝑘𝑘)𝑤𝑤(𝑘𝑘)𝑤𝑤(𝑧𝑧) which 
can be determined from band structure calculations. Figure 2 shows J and U as a function of the 
parameter 𝑉𝑉0 in units of recoil energy 𝐸𝐸𝑅𝑅 = ℏ2𝑘𝑘2/2𝜇𝜇. A larger lattice depth will lead to smaller 
tunneling J because of the higher energy barrier between neighboring sites. On the other hand, 
the atomic wave function will be more localized, and this leads to a stronger onsite repulsive pair 



interaction U.  

 
Figure 2: Plot of the scaled on site interaction 𝑈𝑈/𝐸𝐸𝑅𝑅 multiplied by 𝑎𝑎/𝑎𝑎𝑠𝑠 (>>1) (Solid line: axis on left-hand side 
of graph) and  𝐽𝐽/𝐸𝐸𝑅𝑅 (dashed line; axis on right-hand side of graph) as a function of  𝑉𝑉0/𝐸𝐸𝑅𝑅 [1]. 
 
From Figure 2, we can see that by varying the optical lattice potential depth, a broad range of 
values of J and U could be reached. As a result, different quantum phases will show up if we vary 
the strength of optical lattice potential 𝑉𝑉0.  
 
Zero temperature phase diagram for cold atoms moving in optical lattice: 
A qualitative analysis of the zero temperature quantum phase diagram of the Bose-Hubbard 
model was given in [2]. First, we study the homogenous case (VT(𝐱𝐱) = 0)where the energy 
offset of each site 𝜖𝜖𝑠𝑠  is zero. In grand canonical ensemble, the zero temperature phase diagram is 
determined by the minimization of 𝐻𝐻′ = 𝐻𝐻 − 𝜇𝜇𝜇𝜇 . N is the total number of atoms in the system, 
𝜇𝜇 = ∑ 𝑠𝑠𝑠𝑠𝑠𝑠 . In Figure 3, we show the phase diagram in 𝜇𝜇 − 𝐽𝐽 plane.  
 
 

 
Figure 3: Zero temperature phase diagram of bosons in optical lattice. n is the average number of bosons per 
lattice site [2]. 
 
 
In the limit J = 0, each site i is occupied by 𝑠𝑠𝑠𝑠  bosons which minimizes the on-site energy:  



 
𝐻𝐻𝑠𝑠′(𝑠𝑠𝑠𝑠) = −𝜇𝜇𝑠𝑠𝑠𝑠 + 1

2
𝑈𝑈𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 − 1).                                              (3) 

 
Since 𝑠𝑠𝑠𝑠  must be an integer, when 𝑠𝑠 − 1 < 𝜇𝜇/𝑈𝑈 < 𝑠𝑠, 𝑠𝑠𝑠𝑠 = 𝑠𝑠 will minimize the onsite energy 
𝐻𝐻𝑠𝑠′(𝑠𝑠𝑠𝑠). So, exactly n bosons will occupy each site when 𝑠𝑠 − 1 < 𝜇𝜇/𝑈𝑈 < 𝑠𝑠. The system is in 
commensurate filling state, i.e. each site has the same number of particles. Now, fixing 𝜇𝜇 at a 
given value corresponding to n bosons per lattice site, i.e., 𝜇𝜇

𝑈𝑈
= 𝑠𝑠 − 1

2
+ 𝛼𝛼, for some 𝛼𝛼 in the 

range − 1
2

< 𝛼𝛼 < 1
2
, we turn on some weak hopping 𝐽𝐽/𝑈𝑈 > 0. The potential energy cost of adding 

or removing one particle to site i are given respectively by 𝛿𝛿𝐸𝐸𝑝𝑝 = 𝐻𝐻𝑠𝑠′(𝑠𝑠 + 1) − 𝐻𝐻𝑠𝑠′(𝑠𝑠) =
�1

2
− 𝛼𝛼�𝑈𝑈  and 𝛿𝛿𝐸𝐸ℎ = 𝐻𝐻𝑠𝑠′(𝑠𝑠 − 1) − 𝐻𝐻𝑠𝑠′(𝑠𝑠) = �1

2
+ 𝛼𝛼�𝑈𝑈 . So, when J is smaller than both 𝛿𝛿𝐸𝐸𝑝𝑝  

and 𝛿𝛿𝐸𝐸ℎ , the kinetic energy gained by adding (removing) a particle from the system and allowing 
the extra particle (hole) to hop around the lattice is insufficient to overcome the potential energy 
cost. As a result, for every positive n, there exists a finite region in the  𝜇𝜇 − 𝐽𝐽 plane (Figure 3) in 
which the number of particles is fixed at precisely n per site. Moreover, in each such region, 
allowing one particle to hop from one site to the next gains roughly J in the kinetic energy at the 
expense of 𝛿𝛿𝐸𝐸𝑝𝑝ℎ = 𝛿𝛿𝐸𝐸𝑝𝑝 + 𝛿𝛿𝐸𝐸ℎ  in potential energy. Because 𝐽𝐽 <  𝛿𝛿𝐸𝐸𝑝𝑝ℎ , such hops are 
energetically costly. So, particles could not hop freely from one site to another when J is small 
compared to U. Thus, the regions of fixed n in Figure 3 represent mott-insulating phase with 
commensurate filling at each site. 
 
The mott insulating phase is characterized by the existence of an energy gap, 𝐸𝐸𝑔𝑔 , for the creation 
of particle or hole excitations, i.e. for the addition of particle to or, removal of particle from the 
system. For any point within the mott insulating phase in Figure 3, the gap 𝐸𝐸𝑔𝑔  for particle (hole) 
excitation, is the distance in 𝜇𝜇 direction with J fixed from the upper (lower) phase boundary. In 
each Mott insulator phase, the lowest-lying excitation that conserves the total particle number is 
a particle plus hole excitation corresponds to the particle hopping from one site to the next site. 
The total energy cost of this excitation is the sum of particle and hole excitations which is the 
distance between upper and lower phase boundary in 𝜇𝜇 direction with J fixed. So, for a given J, 
the energy of this excitation is independent of 𝜇𝜇.  
 
The fact that the mott insulating phases have lobe-like shapes in Figure 3 could be understood as 
follows. If we start at a point within the mott insulating region, and increase  𝜇𝜇  at fixed J, 
eventually, we will reach a point where the potential energy cost of adding one particle to the 
system will be less than the kinetic energy gain of allowing it to hop around. In this case, it will 
be energetically favorable to add a particle to the system and let it hop around. Since, any non-
zero density of particles free to hop around will Bose condense, producing a superfluid state in 
zero temperature, this point of energy balance defines the phase boundary for a transition 
between the mott insulating and superfluid state. Similarly, when we decrease 𝜇𝜇 with J fixed, 
eventually we will reach a point where the potential energy cost of removing a particle from the 
system is less than the kinetic gain of letting the created hole to hop around. In zero-temperature, 
any non-zero density of hole will also Bose condense and create superfluid state. As a result, 
whether we increase or decrease 𝜇𝜇, we will eventually reach the phase boundary between mott 
insulating and superfluid state. Since the kinetic energy of mobile particles or holes is 
proportional to J, when we increase J, the width in 𝜇𝜇 of the mott insultating state will decrease. 



Thus the mott insulating phases have lobe-like shapes in Figure 3. This concludes the qualitative 
analysis of the phase diagram in the homogeneous case. 
 
In the above analysis, we only considered the homogeneous case, where the trapping potential 
VT(𝐱𝐱) = 0. In real experiments, the trapping potential is not zero, but our above analysis will still 
work if we replace the chemical potential 𝜇𝜇 by its local counterpart 𝜇𝜇 − VT(𝐱𝐱). This is called the 
local density approximation and works well when VT(𝐱𝐱) varies smoothly in space. Now, different 
lattice sites correspond to different local chemical potential. This may lead to a coexistence of 
superfluid and mott-insulating phases in the arrangement of a wedding cake in real space (see 
Figure 4a).  
 

 
Figure 4: a) wedding cake structure of superfluid and mott-insulating phases; b) the density of cold atoms; c) the 
superfluid component. Parameters: 𝑈𝑈 =  35𝐽𝐽,𝑉𝑉𝑇𝑇(𝑘𝑘,𝑘𝑘) = 𝐽𝐽(𝑘𝑘2+𝑘𝑘2) 𝑎𝑎2⁄ , and 𝜇𝜇 = 50𝐽𝐽 [1]. 
 
Aside from qualitative analysis, the detailed configuration of atoms moving in optical lattice 
could be calculated numerically using mean field theory [1]. The mean field calculations are 
based on a Gutzwiller ansatz for the ground state wave function | �Ψ𝑀𝑀𝑀𝑀〉 = ∏ |�ϕ𝑠𝑠〉𝑠𝑠  with |�ϕ𝑠𝑠〉 =
∑ 𝑓𝑓𝑠𝑠

(𝑠𝑠)|∞
𝑠𝑠=0

�𝑠𝑠〉𝑠𝑠 , where |�𝑠𝑠〉𝑠𝑠  denotes the Fock state with n atoms at site i. The coefficients 𝑓𝑓n
(i) are 

determined through the minimization of the expectation value of the Hamiltonian 
⟨Ψ𝑀𝑀𝑀𝑀|𝐻𝐻 − 𝜇𝜇𝜇𝜇|Ψ𝑀𝑀𝑀𝑀⟩ .Figure 4b,c show the density 𝜌𝜌(𝑘𝑘, 𝑘𝑘)  and the superfluid component 
|𝜙𝜙(𝑘𝑘,𝑘𝑘)|2 in an optical lattice with a superimposed isotropic harmonic trapping potential in two 
dimensions. From Figure 4b,c, we can see there is a mott-insulating phase with two atoms per 
site at the center of the trap (𝜌𝜌 = 2) surrounded by a mott phase with a single atom (𝜌𝜌 = 1)  and 
superfluid rings between the mott-insulating phases. For smaller values of the chemical potential, 
only a single mott phase would exist at the trap center. 
 
Quantum phase transition from superfluid to mott insulating state: 
In the above, we have derived the phase diagram of the cold atomic system in an optical lattice. 
Experimentally, it has been shown that by changing the depth of optical lattice potential, a 
quantum phase transition from superfluid to mott-insulating state could be realized. When optical 
lattice potential depth is small, the Bose-Einstein condensate is a superfluid and could be 
described by a wave function that exhibits long range phase coherence. If we suddenly turn off 
all the confining potential, the atomic gas wave function will expand and interfere with each 
other. Because of the long range coherence, the resulting absorption image of the atomic gas will 
have a high contrast interference pattern. However, if the optical lattice potential depth is large, 
the system would enter into the mott-insulating state and long range phase coherence no longer 



exists. Thus, if we let the atomic gas expand freely, the absorption image will not show inference 
pattern as before. The detailed the experimental procedure is as below [3]. 
 
First, Rb87 Bose-Einstein condensates are created and trapped magnetically. Then the trapped 
condensate is transferred into the optical lattice by slowly increasing the intensity of lattice laser 
beams to their final value over a period of 80 ms using an exponential ramp with a time constant 
of 𝜏𝜏 = 20𝜇𝜇𝑠𝑠. The slow ramp speed ensures that the condensate always remains in the many 
body ground state of the combined magnetic and optical trapping potential. After raising the 
lattice potential the condensate has been distributed over more than 150,000 lattice sites with an 
average 2.5 atoms per lattice site in the center. In order to test whether there is still phase 
coherence between different lattice sites after ramping up the lattice potential, the combined 
trapping potential was suddenly turned off. The atomic wave functions are then allowed to 
expand freely and interfere with each other. In the superfluid regime, where all atoms are 
delocalized over the entire lattice with equal relative phases between different lattice sites, a 
high-contrast three-dimensional interference pattern as expected for a periodic array of phase 
coherent matter wave sources was observed (see Figure 5).  
 

 
Figure 5: Schematic three-dimensional interference pattern with measured absorption images taken along two 
orthogonal directions. The absorption images were obtained after ballistic expansion from a lattice with a potential 
depth of 𝑉𝑉0 = 10𝐸𝐸𝑅𝑅 and a time of flight 15ms [3]. 
 
When the lattice potential depth is increased, the resulting interference pattern changes markedly 
(see Figure 6). Initially the strength of higher-order interference maxima increases as the 
potential height is raised, due to the tighter localization of the atomic wave functions at a single 
lattice site. Quite unexpectedly, however, at a potential depth of around 13𝐸𝐸𝑅𝑅 , the interference 
maxima no longer increase in strength (see Figure. 6e). Instead, an incoherent background of 
atoms gains more and more strength until at a potential depth of 22𝐸𝐸𝑅𝑅  no interference pattern is 
visible at all. At this lattice potential depth, phase coherence has been completely lost. From 
Figure 6, we also see that during the evolution from the coherent to the incoherent state, there is 
no broadening of the interference peaks when the interference pattern is still visible. This 
behavior can be explained on the basis of the phase diagram. After the system has crossed the 
quantum critical point U/J=z*5.8, it will evolve in the inhomogeneous case into alternating 
regions of incoherent mott insulating phases and coherent superfluid phases where the superfluid 
fraction continuously decreases for increasing ratios U/J.  
 



 
Figure 6: Absorption images of multiple matter wave interference patterns. These were obtained after suddenly 
releasing the atoms from an optical lattice potential with different potential depths 𝑉𝑉0 after a time of flight 15ms. 
Values of 𝑉𝑉0were: a, 0𝐸𝐸𝑅𝑅; b, 3𝐸𝐸𝑅𝑅; c, 7𝐸𝐸𝑅𝑅; d, 10𝐸𝐸𝑅𝑅; e, 13𝐸𝐸𝑅𝑅; f, 14𝐸𝐸𝑅𝑅; g, 16𝐸𝐸𝑅𝑅; h, 20𝐸𝐸𝑅𝑅; [3] 
 
Restoration of phase coherence: 
A notable feature of mott-insulating state is that phase coherence could be rapidly restored if the 
optical lattice potential is lowered again to a value where the ground state of the condensate is 
completely superfluid [3]. It is shown in Figure 7b, that after only 4ms of ramp-down time, the 
interference pattern is fully visible again, and after 14ms of ramp-down time the interference 
peak has narrowed down to their steady-state value, proving that phase coherence has been 
restored over the entire lattice. It is interesting to compare this to that of a phase incoherent state, 
where random phases are present between neighboring sites. In phase incoherent state, there is 
no interference pattern even if the optical lattice potential has been ramped down (see Figure 7b).  
 

 
Figure 7: Restoring coherence. a, Experimental sequence used to measure the restoration of coherence after 
bringing the system into the mott insulating phase with 𝑉𝑉0 = 22𝐸𝐸𝑅𝑅 and lowering the potential afterwards to 𝑉𝑉0 =
9𝐸𝐸𝑅𝑅 , where the system is superfluid again. The atoms are first held at the maximum potential depth  𝑉𝑉0 for 20ms, 
and then the lattice potential is decreased to a potential depth of 9𝐸𝐸𝑟𝑟  in a time t after which the interference pattern 
of the atoms is measured by suddenly releasing them from the trapping potential. b, Width of the central interference 
peak for different ramp-down times t. In case of a mott-insulating state (filled circles) coherence is rapidly restored 
already after 4ms. For a phase incoherence state (open circles) using the same experimental sequence, no 
interference pattern reappears again, even for ramp-down times t of upto 400ms. The phase incoherent states are 
formed by applying a magnetic field gradient over a time of 10ms during the ramp-up period, when the system is 
still superfluid. c-e, Absorption images of the interference patterns coming from a mott-insulating state after ramp-
down times t of 0.1ms (c), 4ms (d), 14ms (e) [3].  
 
 



Excitation spectrum of mott-insulating phase: 
Besides the loss of interference pattern, the mott-insulating state is also characterized by an 
energy gap in the excitation spectrum due to the repulsive onsite interaction. In the limit J<<U, 
the energy gap is U, which is the distance in 𝜇𝜇 direction between the upper and lower boundary 
of the mott lobe as mentioned before. Because of the energy gap, hopping of particles through 
the lattice is suppressed in the mott-insulating state. But, if the lattice potential is titled by the 
application of a potential gradient, tunneling is allowed again if the energy difference between 
neighbor sites equals the onsite interaction energy (see Figure 8). 

 
Figure 8: If a potential gradient is applied to the system along the z-direction, such that the energy difference 
between neighboring lattice sites equals the onsite interaction energy U, atoms are allowed to tunnel again. Particle-
hole excitations are then created in the mott-insulating state [3].  
 
The experimental procedure is shown in Figure 9a. It has been found that if excitations have 
been created during the application of the potential gradient at the potential depth 𝑉𝑉0 = 𝑉𝑉𝜇𝜇𝑎𝑎𝑘𝑘 , the 
condensate will not be able to return to the coherent superfluid state by subsequently lowering 
the potential depth again. Instead, excitations in the mott-insulating state will lead to excitations 
in the lowest energy band in the superfluid case. These excitations are simply phase fluctuations 
between lattice sites, and cause a broadening of the interference maxima in the interference 
pattern (see Figure 9b). Figure 9c-f shows the width of the interference peak versus the applied 
gradient potential [3].  

 



From Figure 9, we can see that for a superfluid system at 10𝐸𝐸𝑟𝑟 , the system is easily perturbed 
already for small potential gradients and for stronger gradients, a complete dephasing of wave 
functions leads to a saturation in the width of the interference peaks. At a potential depth of about 
13𝐸𝐸𝑟𝑟 , two broad resonances start to appear in the excitation spectrum, and for a potential depth 
of 20𝐸𝐸𝑟𝑟 , a dramatic change in the excitation spectrum has taken place.  The first resonance can 
be directly attributed to the creation of single particle-hole excitations in the mott-insulating state. 
The second resonance occurs at exactly twice the energy difference of the first, and can be 
attributed to one of the following processes: (1) simultaneous tunneling of two particles in a 
mott-insulating phase with 𝑠𝑠 > 1 atoms, (2) second order processes, in which two particle-hole 
pairs are created simultaneously, with only one in the direction of the applied gradient, and (3) 
tunneling processes occurring between lattice sites with 𝑠𝑠 = 1 atom next to lattice sites with 
𝑠𝑠 = 2 atoms. From the disappearance of interference pattern and the appearance of resonances in 
the excitation spectrum, the critical point of superfluid to mott-insulting phase transition could be 
determined. The critical lattice potential depth 𝑉𝑉0  is between 10𝐸𝐸𝑟𝑟  and 13𝐸𝐸𝑟𝑟  [3]. This 
uncertainty is related to the inhomogeneous density profile of the trapped atoms and the fact that 
the interference pattern extends beyond the transition point due to short-range coherence in the 
mott-insulating phase [7]. Thus, the occurrence of peaks in the interference pattern is not a very 
precise indication of superfluidity [4].  
 
Transport measurement of cold atoms in optical lattice: 
Fortunately, besides phase coherence of wave function, the existence of a critical velocity is 
another characteristic feature of superfluidity. In the superfluid phase, current flows without 
dissipation if momentum does not exceed a critical momentum, while in the mott-insulating 
phase the critical momentum vanishes and transport is dissipative [5]. Thus, a transport 
measurement would better characterize the superfluid state by observing a critical current for 
superfluid flow and provide a clear distinction between the two quantum phases.  
 
The experiment was done in the following way [5]. First, Bose-Einstein condensates were 
created and confined in an optical lattice. Then a moving lattice with velocity 𝑣𝑣 = 𝜆𝜆𝛿𝛿𝑓𝑓/2 was 
created by introducing a small frequency detuning 𝛿𝛿𝑓𝑓 between the two counter propagating laser 
beams. If the velocity 𝑣𝑣(𝑡𝑡) changes slowly enough not to induce inter-band excitations, the 
initial Bloch state |�𝑝𝑝 = 0〉 of the condensate in the optical lattice adiabatically evolves into the 
current carrying state |�𝑝𝑝(𝑡𝑡) = −𝜇𝜇𝑣𝑣(𝑡𝑡)〉  where 𝑝𝑝  is the quasi-momentum. In a deep lattice 
potential, atoms will be dragged along with the moving lattice. Since the size of the trap is finite, 
atoms would reach the trap boundary in a short time. The problem was solved by first ramping 
up the lattice with 𝑣𝑣 = 0, and then alternating the velocity of the moving lattice, thus performing 
a low-frequency ac transport measurement instead of dc. In a typical measurement, a sinusoidal 
momentum modulation of the moving lattice with amplitude 𝑝𝑝𝑀𝑀  and period 10ms was applied. 
Then, the combined trapping potentials were turned off suddenly. After 33ms of ballistic 
expansion, the condensate fraction of the center peak of the superfluid interference pattern was 
recorded as a function of the momentum modulation amplitude 𝑝𝑝𝑀𝑀 . To obtain a high contrast 
between the stable and dissipative regimes, several cycles of momentum modulation were 
applied. Figure 10a shows how the transition between superfluid and dissipative currents became 
sharper with increasing number of cycles of the momentum modulation. The critical momentum 
was determined from a log-log plot of the condensate fraction as a function of momentum p (see 
Figure 10c).  



 
The critical lattice depth for the superfluid to mott-insulating phase transition could be 
determined as the point where the critical momentum vanishes. Figure 11 shows the critical 
momentum versus the interaction strength 𝑢𝑢 , where 𝑢𝑢 = 𝑈𝑈 𝐽𝐽⁄ . Theoretically, the critical 
momentum 𝑝𝑝𝑐𝑐  near transition point has the following form: 𝑝𝑝𝑐𝑐 ∝ �1 − 𝑢𝑢/𝑢𝑢𝑐𝑐  [6]. Using this form, 
the critical value 𝑢𝑢𝑐𝑐 = 34.2 (±2.0) has been determined. This corresponds to a lattice depth of 
13.5 (±0.2)𝐸𝐸𝑟𝑟 . Thus, the transport measurement can provide a better estimation of the critical 
point of the phase transition.  

 
Figure 11: Critical momentum for a condensate in a 3D lattice. The solid line shows the theoretical prediction for 
the superfluid region. The horizontal solid line is a fit to the data points in the mott-insulating phase. (Inset) Fit of 
critical momentum near the superfluid to mott-insulating transition [6].  
 
Conclusion: 
In this essay, we studied the phase diagram of cold atomic system in optical lattice potential 
which could be described by Bose-Hubbard Model. We showed that depending on the relative 
strength of onsite interaction and U and tunneling J, the system could be in either superfluid or 
mott-insulting state. Experimentally, superfluid state is characterized by a distinct interference 
pattern, and mott-insulating state is characterized by a gap in the excitation spectrum. We also 



showed that transport measurement revealed a critical momentum for superfluid flow. The 
existence of a critical momentum is a better indication of superfluid state. So, transport 
measurement can better locate the critical point for phase transition.  
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