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Abstract

Nature has presented us a wide variety of fascinating collective 
behaviors in animals – birds flying in flocks, fish swim in shoals and 
wild horses  move in  herds.  A number of  models are proposed in 
order to understand the origin of collective behavior and reveal the 
underlining  physics.  In  this  paper,  two  theoretical  models  are 
reviewed: the discrete SPP model and the continuum hydrodynamic 
model. Both model show that long-range ordering arise as a result of 
local  interactions  of  the  system.  The  results  are  compared  with 
recent quantitative experimental data and the emergence of ordered 
collective motion is discussed. 



In the evening sky of European countryside, thousands of starlings fly in a flock and move 
cohesively in one direction. The flock keep changing its direction every couples of minutes, and each 
individual bird flies with seemingly effortless skill to keep up the motion of the entire flock. While in 
the waters of Atlantic Ocean, the same trick is played by a school of herrings. Fish swim harmonically 
in the school as through they are programmed and know exactly what to do at any given time. We have 
all seen  such amazing spectacles in real life or on television. Many words are used to describe the 
phenomenon: flocking, herding, schooling, swamping. These words are essentially the same, namely 
collective animal behavior.  

 

Figure 1: Images of collective behavior. (a)  A typical fish school in the  
ocean [1]. (b) Starlings flocking in the dusk [2]. (c) Traffic flow in  
Paris [1]. (d) A swamp of fire ants [3]. (e) A Mexican wave in a  
football stadium [1]. (f) A  group of marching locusts [1].  

  

(b)
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1. Introduction

Collective  behavior  is  an  emergent  phenomenon,  in  which  large  numbers  of  individuals 
synchronize their movement in a group. It is observed in many living organisms (as shown in Fig. 1): 
birds,  fish,  mammals,  insects,  and bacteria,  with scales ranging from a few micrometers  to miles. 
Collective  behavior  occurs  even  in  human  society:  pedestrian  behavior,  applause  dynamics,  and 
Mexican waves are a few examples. 

The  phenomenon  of  collective  motion  have  posted  a  number  of  intriguing  questions  and 
attracted great attention of the scientific community. Questions like why do birds fly in flocks; how a 
fish  among a  crowded  school  synchronize  its  motion  with  the  rest  of  the  school;  and  what's  the 
underlining rules of the collective animal behavior are asked by scientists from various disciplines.

From an evolutionary biological  point  of view, it  is  not hard to understand the reason why 
animals  aggregate  and move in  groups.   First  of  all,  joining  a  flock  protects  an  individual  when 
encountering predators.  Although fish at the edge of a school are easily attacked by predators, they are 
only a small fraction of the school. Majority of the fish are inside the school protected by a thick wall 
of peers, and are relatively safe. Secondly, searching for food as a flock is more effective than along. 
Thirdly, flocking is beneficial for the individuals in terms of social activities and mating [4].

 Birds take great advantage of being a part of a flock, but how do they coordinate their motion 
as a whole? Although it appears that each individual adjusts its movement based on the knowledge of 
what  the  whole  group  is  doing,  biologists  believe  that  individuals  are  only  aware  of  what  their 
neighbors  are  doing  instead  of  seeing  the  whole  picture  of  the  flock.  Animals  interact  with 
surroundings by their senses: vision,  hearing and smelling. In a densely packed flock, they can only 
sense their close neighborhood.  Just think of the experience of walk in a crowd, you have clear vision 
of your neighbors but you never know what is going on with the rest of the crowd. In a word, the 
interaction  between  individuals  in  the  aggregation  is  short-range.   And  such  local  interaction  is 
responsible for the emergence of the globe phenomenon [5].

To investigate the question of  how birds fly together base on their local interactions, Reynolds 
first simulated the flocking of birds by computer animation in 1987 [4]. He established the following 
three simple rules for the artificial birds in his animation, namely boids. First,  avoid collision. The boid  
must fly away from its neighbor when getting too close. Second,  match velocity. The boid needs to fly 
with the average velocity of nearby peers. Third, flock centering. There are attraction between the boid 
to make them fly close. The model is able to generate flocking of the boids that  closely resembles to 
the  realistic  bird  flocks,  which  further  confirms  the   collective  motion  originates  from  the  local 
interactions. 

The fact that long-range ordering arises from local interactions in animal groups has captured 
the attention of physicists.  Viscek et al. first introduced the self-propelled particles (SPP) model to 
investigate the emergent phenomenon. In his model, particles are propelled with an intrinsic force and 
move with a constant speed. The only rule is that a particle aligns its direction of motion with its 
neighbors in a defined radius – at each time step, the particle sets its velocity to the average moving 
direction of the neighborhood plus a random noise. The simulation results of the model demonstrates 
long-range ordering phase exists in one-, two- and three-dimension. 

Shortly after the proposal of the SPP model, a theoretical approach was attempted by Toner and 
Tu. Continuum hydrodynamics was applied to the SPP system by coarse-graining the velocity and 
density fields. In two dimensions, the hydrodynamic model showed the existence of an ordered phase, 
which is consistent with the SPP model. However, the model also predicts that there is no ordered 
phase in one dimension. To  settle this discrepancy of the two models, Vicsek et al. derived continuum 
equations by integrating the master equation of the microscopic dynamics [6].  The linear stability 
analysis of the equations demonstrates the existence of ordered phase in one dimension when the noise 



is low. 
Until recently, scientists had little empirical data to test their hypothesis and models.  Biologists 

has collective data on schools consisting 20-40 fish in a tank [2]. These data  includes only a small 
number of individual which are often loosely packed. To obtain empirical data on a large and closely 
packed  group of  animals  and  therefore  understand  the  underlining  rules  for  the  collective  animal 
motion, scientists set up a project named StarFlag in Italy [2]. They take images of  flocks of starlings, 
and  then precisely  reconstruct  the  flocks  in  three dimensions.  From analysis  of  these  quantitative 
experimental data, the group reveals that the interaction of the birds is anisotropic and it depends on 
topological distance rather than metric distance as most models have assumed.  

So far I have introduced the concept of collective animal behavior and presented a number of 
models proposed to study its origin.  In section 2 of this paper,  I  will  review the SPP model and 
hydrodynamic  model  in  detail.   In  section  3,  I  will  further  describe  the  quantitative  experimental 
approach by StarFlag. Section 4 is the conclusions and discussions.     

     

2. Theoretical Models

2.1The self-propelled particle model in two-dimension

To  understand  the  complex  behavior  of  non-equilibrium  multi-particle  system,  Vicsek  and 
Czirók proposed a model based on simple interactions of  self-propelled particles (SPP) [7].  Self-
propelled particles are particles with an intrinsic  driving force,  resembling organisms in biological 
systems. In the model,  each particle is assigned a constant speed and is allowed to interact with its 
neighbors by aligning the direction of its motion with the average moving direction of  nearby particles.  
By computer simulation, the model successfully demonstrates the transition from a disordered state to 
an ordered state. 

N particle is confined on an L × L square shaped surface with periodic boundary conditions. 
Each particle has a velocity with a fixed magnitude v0. At t = 0, particles are randomly distributed in the 
cell, and the direction of velocity θ is randomly assigned to each particle. At a later time t = Δt,  the 
position and velocity are given by the following two equations: 

xi (t + 1) = xi (t) + vi (t) Δt

The position and velocity vector of the ith particle at time t is denoted by xi  (t) and vi  (t) respectively. 
The time unit Δt = 1 denotes a time-step between updates of the position and velocity [7].

θi (t + 1) = <  θ (t) >r + Δθ

The direction of the  ith particle is denoted by angle θi  . The average of direction is taken over all the 
particles located in a radius r around the ith particle, including particle i itself. The noise comes in as Δθ, 
which is a random number taken from [ -η/2 , η/2 ] with a uniform probability.  

There are three control parameters in a given system: amplitude of the noise η, magnitude of the 
velocity v0 and average density ρ = N/L2. In the simulation, v0 was kept constant, and various values of 
η, ρ where tested. Vicsek found that for low density, low noise, the particles aggregated into a number 
of small  groups moving in detections randomly picked by their members. In each small group, the 
particles move cohesively as shown in Fig. 2 (b). While for high density, high noise, the velocities of 
the particles arbitrarily distributed in all directions (Fig. 2 (c)). However, figure 2 (d) indicates that for 
high density, low noise,  the motion of all particles became ordered and move in the same direction. 



To understand the nature of this transition, the order parameter is chosen to be the magnitude of 
the average momentum of the particles : 

                         = 1
N
∣∑

j

v j∣

When particles move in random directions, the sum of velocities is close to zero therefore  Φ vanishes. 
Contrary, when particles move cohesively towards the same direction such as in Fig. 1 (d),  Φ is close 
to 1. Collective behavior emerges when Φ > 0.  For an infinite size system, numerical results show that:

                        ~{{[c−]/c}
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where  ηc (ρ)  denotes the critical  noise  amplitude and  β is  determined to be 0.42  ± 0.03 which is 
different from the mean-field theory value 0.5. The above equation describes the transition between the 
disordered phase above the critical noise and the ordered phase below. 

2.2 Ordered phase in two-dimension 

This model is a dynamic analogue of the ferromagnetic XY model [6]. The velocity of particles 
in the SPP model acts as the  spin in the XY model, and the noise Δθ as the temperature [5]. Despite the 
resemblance of the two models, there is a remarkable difference: the SPP model describes a dynamic 
and non-equilibrium situation while the ferromagnetic XY model is based on the static equilibrium 
situation. Consequently, the SPP model has an ordered phase in 2D, while such ordered phase does not 
exist in the ferromagnetic XY model  according to Mermin-Wagner theorem [6]. 

To further investigate this “discrepancy”,  Vicsek et al set v0 = 0, and observed the formation of 
Kosterlitz-Thouless vortices. At a non-zero velocity, for instance, v0 = 0.01, the vortices vanishe after a 
certain relaxation time as shown in Fig. 3. Therefore,  the Kosterlitz-Thouless vortices are unstable in 
the SPP model and long range order can form within the system. 

Figure 2: This figure shows the velocity field for different values of noise and density. 

(a) Initial condition.  (b) Low density, low noise. (c) High density, large noise. (d) High density,  
low noise



2.3 The self-propelled particle model in one- and three-dimension

In 1D SPP model, the ordered phase was again observed with β1d = 0.6 ± 0.05, different from 
that of the   2D case and the mean-field value 0.5 [6]. The spontaneous symmetry breaking in 1D 
system well be further discussed in 2.4.

The behavior of the system in 3D case is generally the same as in 2D. The system exhibits long-
range ordered phase for all densities for η (ρ) below the critical noise of the given density [6]. 

2.4 The continuum approaches

To investigate how the nonequilibrium aspects put a system into ordered phase even in 2D, 
Toner et al. proposed a continuum model based on hydrodynamics [8]. This approach is different from 
the SPP model - instead of working out the location and velocity of each particle and carefully define 
the  interactions  between  the  particles,  it  describes  the  behavior  of  the  whole  system by  a  set  of 
continuum equations which involve only a few phenomenological parameters. 

The continuum equations being used are Navier-Stokes equations. To apply these equations to a 
group of self-propelled organisms, one need to use the coarse-grained density and velocity fields which 
are obtained by averaging the number density and velocity fields over the coarse-grain characteristic 
volume. The basic equations for the fluid of SPPs are [9]: 

∂t∇⋅v =0

P=P =∑
n=1

∞

 n−0
n
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The first equation is the conservation of mass. The second equation  describes the pressure where ρ0 is 
the  average  of  the  local  number  density  and  σn and  r  denotes  coefficients  in  the  pressure 
expansion.  In  the  last  equation  ,the  λ  terms  are  convective  derivative  of  the  velocity  field  v,  the 
coefficients λ1,    λ2 and  λ3 are all non-zero because the system is not Galilean invariant [9]. The the 
coefficients α and β on the right hand side of the equation are connect to the symmetry breaking. The 
coefficients Di are constants denoting the diffusion or viscosity of the SPP fluid.  The term f is the 
random driving force from the noise. Interestingly, the equations introduce the viscous term, leading to 
the  emergence  of  the  elasticity  in  the  SPP system:  birds  tend  to  align  their  velocities  with  their 
neighbors, which result in a long-range ordered phase within the flock. 

Figure 3: Time evolution of the velocity field with v0 = 0.01. (a) is taken after 50 steps, (b)  
100, (c) 400 and (d) 3000 steps.  



 In more than four dimensions, the model has the same behavior as the equilibrium model while 
in less than four dimensions, the two behave differently. The model works especial well in the 2D case 
where  it  demonstrated  a  stable  long  range  ordered  phase  existing  for  the  system and the  scaling 
exponents is calculated. However, the model reveals that there is no ordering phase in 1D,  which 
contradicts to the SPP model. 

In  order  to  settle  the  discrepancy between  the  two models,   Vicsek  et  al.  used  a  different 
approach by integration of the master equation of the microscopic dynamics and derived the following 
equations.

∂t=−0∂x U D ∂ 2
x

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where  ρ and U are the coarse-grained density and velocity fields and ξ is the noise. The coefficients ν0, 

D, μ and α are phenomenological coefficients. The characteristic nonlinear term 
∂x U ∂x


slows 

down the particles when they encounter the particles coming from the opposite direction.  
The results of this model reveals that the system become ordered when the noise is low and α is 

large which is consistent with the discrete 1D SPP model. Numerical results of the equations yield the 
same behavior of the system as the discrete 1D SPP model which further proves that continuum model 

and discrete model “belong to the same universal class” [5].   

3. Experimental Methods

With a number of theories proposed for collective motion, experimental data become crucial to 
verify the assumptions and provide feedback to the existing models. Unfortunately, it is extremely hard 
for the experimentalists to collective 3D data on the collective motion of animals in nature and until 
recently there were only a few empirical data on groups composed of  small numver of individuals. The 
experiment in studying the collective motion was far behind the theory [9].

To  study  the  bird  flocking  behavior,  and  to  understand  the  underlining  nature  of  such 
phenomenon, a group of multidisciplinary scientists  started a project  in Italy  named StarFlag.  The 
project consists of physicists, biologists, computer scientists, and aims at determining the “fundamental 
laws of  collective behavior and self-organization of animal aggregation in three dimensions” [2].  

The group focuses on the flocking behavior of starlings which are common birds in Europe. 
They have a routine of flying in flocks and swirling around in the dusk before returning to their nests. A 
typical flock of starlings can range from hundreds to thousands of birds which  move cohesively and 
put  on  a  magnificent  aerial  display.  To  record  the  position  of  each  bird  at  a  certain  time, 
stereophotography is used to take images of  the flocks. Using the specific trifocal technique, with three 
different point of view, the group is able to identify  the position of each bird with an error below 5% 
for both the relative and absolute distance [10]. 

Three cameras are used in order to generate a 3D image of the flock. One big problem is while 
reconstructing the 3D flock on the computer, it is hard to identify the same bird from images taken 
simultaneously by different cameras. First of all, the flock is densely packed. Second, it is difficult to 



tell the shape of a bird in the image since the flock is far away from the cameras. Consequently, one 
finds lots of  small black dots densely distributed in the flock. To solve the problem, Cavagna et al. 
spent about two years to develop algorithms using statistical physics methods. The method does a great 
job with only < 5% mismatch of the targets[10].

By studying the structure of starling flocks, the team reveals some interesting results:
1. All  the previous models assumes isotropic interactions between the birds.  From the 

reconstructed  3D  flocks,  StarFlag  scientists  found  that  the  interaction  is  actually 
anisotropic in angular distribution. A bird in a flock tend to find its neighbors on the side 

Figure 4: Images of a flock of starlings and its 3d reconstruction. The  
small black points are the images of birds [11]. To reconstruct the flock in  
3D, each bird in the left-hand image has to match to the same bird in the  
right-hand image. (a) Left-hand image of the flock (b) right-hand image of  
the same flock taken simultaneously as (a). (c)-(f) 3D reconstruction of the  
flock from different point of view. (d) shows the same view point as in (b)



more easily than to find neighbors in front and behind it [2]. The anisotropy holds for 
about 6 to 7 neighbors before it decays where the spatial structure becomes isotropic. 
The anisotropy of the interaction is realistic if one think about the way birds see their 
surroundings which is never isotropic.  

2. The team also found that the interactions between the birds depend on the topological 
distance of the neighbors instead of their metric distance and a bird only interacts with 6 
to 7 nearest neighbors [10]. The metric distance is the actual distance between two birds. 
Most of the previous models have assumed interactions between birds as a function of 
physical distance, say 5 m. Topological distance is defined based on the numbers of 
individuals that separate the two birds. It  fits the data better if one adopt the ideal that a 
bird interact with a fixed number of neighbors instead of with neighbors in a certain 
radius. When a flock is under attack by a predator, the flock split into two. The two sub 
groups will quickly merge once the predator passes. If the cohesive motion depended 
only on the interaction between birds within a distance of 5 m, then the two groups will 
never  merge  into  one.  On the  other  hand,  if  the  interaction  depends on topological 
distance, all this make sense. Further more, the advantage of topological interaction is 
that the flock can sustain stronger perturbations.  

The StarFlag group has done extraordinary work to reconstruct 3D data for large and densely 
packed  startling  flocks.  The  data  reveals  some  exciting  results.  This  definitely  provide  precious 
feedbacks  to  the  existing  models.  The  teams  are  currently  work  on  reconstructing  trajectories  of 
individual birds in the flock. 

                
4. Results and Discussions 

 To investigate the nature of collective animal behavior and reveal the underlining physics,   two 
theoretical models  are discussed in this paper. The SPP model addresses the problem from a bottom-up 
manner while the hydrodynamic model used a top-down approach. Despite of  the discrepancy in one 
dimensional systems, both models successfully demonstrate there exists a long-range ordering phase in 
two dimensions. 

The SPP model is a simple but effective model. The particles driven with a constant speed 
follow only one rule: at each time step, a particle updates it direction of motion to the average direction 
of its neighborhood plus a random fluctuation. The model shows that with any value of the particle 
density,  there  are  always  a  ordered  phase  in  one-  two-  and  three-dimension  when  the  noise  is 
sufficiently low. This conclusion seems to contradict the ferromagnetic XY model in 2D. Taking a 
closer look,  however,  one find that  the SPP is  a non-equilibrium system, and its dynamic features 
distinguishes it from the ferromagnetic case. By setting the particle speed to zero, with the formation of 
the Kosterlitz-Thouless vortices, the ordering phase vanish. This is a unstable state and if one increase 
the speed a little above zero, the ordering comes back. 

One of  the advantages  of  the SPP model  is  that  it  is  based on simple rules,  which makes 
calculation of the particle traces possible for a system as large as 10000 particles. And yet, it is very 
effective in showing the emergence of long-range order from local interactions. However, when dealing 
with much larger system on a longer time scale, the SPP model is not the optimized choice.  

The continuum theory based on hydrodynamic equations is proposed to understand the large-
scale,  long-time  dynamics  of  a  flock  [9].   Based  on  symmetry  considerations,  the  hydrodynamic 
equations are derived for the coarse-grained velocity and number density fields. The complex self-
propelled particle system is described by a couple of equations and several parameters which can be 
derived from microscopic models or obtained directly from experiments. The results of the dynamic 



renormalization group analysis indicate that system has long-range ordering in 2D. 
The  hydrodynamic  model  of  provides  a  top-down  view  of  the  dynamic  SPP system.  The 

theoretical work explains the emergence of long-range order in 2D. Nevertheless, it predicts that there 
is no phase transition in 1D which contradicts the SPP model.

A different continuum theory is derived by Vicsek et al. in attempt to settle the above problem. 
The model is based on equations obtained from integration of the master equation of the microscopic 
dynamics. The numerical simulations demonstrates a ordering phase exists when the noise is low. The 
instability of the domains walls which separates particles moving in opposite direction is responsible 
for the emergence of the ordered state.

Quantitative  experimental  data  is  necessary  to  test  the  hypothesis  and  provide  feedback to 
theoretical models. The StarFlag team in Italy has collected images of starling flocks and reconstructed 
the their structures in 3D.  Careful investigations of these structures show that the interactions between 
birds are anisotropic and it depends on topological distance instead of metric distance. 

The group modified the SPP model by replacing interacting metric radius with a topological 
radius in unit of bird. The numerical simulation indicates that this system has ordering at much stronger 
noise than the original SPP model. It will be very interesting to study the origin of this phenomenon. 

In  a  word,  great  efforts  have  been  made  by  scientists  in  exploring  the  collective  animal 
behavior. Theories and models proposed to address the origin and principles of such behavior have not 
only benefited biological and physical science, but computer and social science as well. On one hand, 
more work is still needed to improve the experimental methods in order to provide quantitative data. 
On the other hand, theorists need to work closely with experimentalists to modify the existing models 
base on the empirical data.      
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