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Abstract

In this paper, I brief reviewed the herd behavior in financial mar-
ket. Benerjee model and EZ model are introduced. Phase transition
behavior just like in physical systems is found in EZ herding model.
Power law distribution of returns with exponential cutoff of bump are
studied in EZ model.
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1 Introduction

Physicists are attracted by the applications of physical ideas and methods
in biological, social and economical sciences in the past decades[1, 2, 3]. Fi-
nancial market as a complex system with characteristics similar to physical
system is one of the hottest areas that have been studied[1]. It has been found
that, for example, the distribution of returns shows distinct tails larger than
the Gaussian distribution[4]. Several models have be developed to explain
such fat-tail phenomenon including the “dynamic multi-agent model” by Lux
and Marchesi[4] and “herd behavior” by Eguiluz and Zimmermann[5]. This
paper will focus on the herd behavior and explain some phenomena in finan-
cial market with the herding model.

In this paper, the original Benerjee model herd behavior is introduced
in section 2 to illustrate why people get herded in social activities. The
EZ herding model describing the transmission of information is explained in
section 3. The single-double peak phase transition is found. In section 4,
some more details of EZ model are discussed including the finite size limit
and the interacting EZ model.

2 Benerjee Herding Model

Herd behavior was first proposed by Abhijit V. Benerjee in 1992[2]. In Ben-
erjee’s herding model of decision making, people are inclined to mimic others’
actions. It is obviously understandable when one has no preference and fol-
lows others. However, it is possible that one accepts others’ idea even though
his own information tells him to do something else.

The postulate of Benerjee’s herding model is quite simple[2]. Suppose
there is a set of assets indexed by i in [0, 1]. Each asset has its return denoted
by z(i). There is a unique “right decision” i∗ such that z(i∗) = z > 0, while
for all other i’s, z(i) = 0. Everyone makes his decision in sequence. The later
person is allowed to observe decisions of previous people. However, he only
knows the decisions previosus people made, but does not know how they have
been made. With a probability of α, he may have his own signal suggesting
him what to do. However, there is another probability of 1− β that it turns
out to be a wrong signal which he does not know it. Then he makes his
decision with others’ information and his own signal, if he has got one, but
does not know whether he should believe it or not. Three basic assumptions
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Figure 1: Benerjee’s herding model. (a) The k-th decision maker’s choice
(k > 2). Adapted from Ref. [2]. (b) The probability that no one has chosen
the right option for (red) herding model and (blue) non-herding model.

of this model are made[2]:
(1) If a decision maker has no signal, and all others have chosen i = 0,

then he follows others by choosing i = 0.
(2) When a decision maker is indifferent between his own signal and

others’ choice, he follows his own signal.
(3) When a decision maker is indifferent between others’ different choices,

he chooses the one with highest value of i.
It is easy to find out how the first person makes decision. If he has a

signal, he just follows it. If not, he chooses i = 0. The second person will
always follow the first person if he has not a signal, or follow his signal if
he has one. Figure 1(a) shows the law how following people make decision
based on their own signal and decisions made by previous people.

One of the amazing results of this herding model is the probability of
herding at a wrong option. Without herding model, if decision makers can-
not see others’ choices, the probability of no one has made right choice is
obviously 1− β when everyone’s signal is wrong, if he has one. However, in
this herding model, it can be calculated that [2] this probability is

(1− α)(1− β)

1− α(1− β)
(1)

Figure 1(b) shows the differences between these herding and non-herding
models. In the herding model, there is a sharp drop as β goes away from 0
when almost everybody as a signal (α → 1). It indicates that the right option
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can easily be found when most people have signals in the herding model, even
though their signals are highly probable to be wrong. In non-herding model,
we cannot find such sharp drop as the probability of everyone is wrong is
just proportional to 1− β.

3 EZ Model of Herd Behavior

3.1 EZ herding model of information transmission

The EZ model, named after Victor M. Eguiluz and Martin G. Zimmermann,
is an important application of herding model in information transmission[5].
The idea of the model is quite simple. It involves a system consists of N
agents, which can be pictured as N vertices in a network. Some agents may
connect with each other to form a cluster. Every single agent in a same
cluster shares same information. According to Benerjee’s model, they should
make a same decision: to buy or to sell. As time goes, some other agents
may merge into a cluster, which indicates that information spreads out and
more people get to know the information. The mathematical expression of
the model is that[5]:

(1) Initially, all agents are isolated, i.e. there are N clusters in the system
each of size 1.

(2) At time t, a random agent is selected.
(3) With probability a, this agent becomes active, and hence all agents

in the same cluster. The size of this cluster at this time is s(t). They make a
decision between buying and selling (1 or −1). After that, the cluster breaks
into isolated agents, i.e. s clusters of size 1 form.

(4) With probability 1 − a, this agent stays inactive. Another agent is
selected randomly. If these two agents are of different clusters, then combine
these two clusters to form a larger one.

(5) Repeat steps (2)-(4).
In step (3), all agents in a same cluster share information and behave

in a same manner. The dissolving of the cluster after acting is necessary so
that other new clusters can form indicating new information spreads. Step
(4) shows a way of information transmission. The parameter a controls the
speed of the transmission. When a is large, there is a small probability of
dispersion of information. When a is relatively small, it gets more chances
for information spreading. Eguiluz and Zimmermann presented a herding
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Figure 2: Log-log plot of the probability of returns R for herding parameters
h=2.33, 9, 99 (a=0.30, 0.10, 0.01). Adapted from Ref. [5].

parameter h = 1/a − 1. It is more interesting for the case that information
spreads fast enough such that herding behavior dominates, i.e. a → 0, or
h → ∞.

Price index dynamics is introduced. At step i, price index P evolves as
P (ti+1) = P (ti)e

si/λ. Here si is the size of the cluster that becomes active.
λ is a parameter that controls the size of time evolution of price index. The
price return which is defined as R(ti) = ln[P (ti)] − ln[P (ti−1)] is a linear
function of the cluster size si.

Eguiluz and Zimmermann performed numerical simulations of this model[5].
They chose the agent population to be N = 104, herding parameter h varies
from 2.33, 9 to 99 (a = 0.30, 0.10, 0.01, respectively). Figure 2 shows the
distribution returns of the different herding parameters. For small R, prob-
ability of returns approach the solid line, which shows a power law relation
prob(R) ∝ R−α, where α = 1.5. For larger R, there exists a critical herding
parameter h∗. When h < h∗, the distributions display a continuous cross over
to an exponential cutoff. When h > h∗, there is a bump in the probability
of high returns. This qualitative change leads to the creation of “financial
crashes”.
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3.2 Phase transition in information transmission

Plerou, Gopikrishnan and Stanley[6] first found that in buying and selling
activities in financial market, there exists a phenomenon just like phase tran-
sition in other physical systems. Trade and Quote database was used to an-
alyze each and every transaction of the 116 most actively traded stocks in
the two year period 1994-1995. They calculated the conditional probability
distribution of demand of different local noise intensity Σ versus volume im-
balance, which interprets the net demand in the market. It is found that
for Σ < Σc, the most probable value of demand is near zero, called “equi-
librium phase”, indicating that buying and selling are equally important in
this case. For Σ > Σc, there are two peaks symmetrical distributed around
zero demand, which is called “out-of-equilibrium phase” meaning that either
buying or selling dominates in the market.

Similar phase transition can be found in EZ model. In figure 2, the
exponential cutoff for small h and bump in high returns for large h show dif-
ferent phases in herd behavior. There is a critical value h∗ in this transition.
More detailed study shows that[7] there is single-double peak two-phase phe-
nomenon in EZ model. An order parameter r is introduced to describe the
fluctuation in a time t:

r(t) = ⟨|R(t′)− ⟨R(t′)⟩t|⟩t (2)

Here ⟨· · · ⟩t means the average over t′ in a time interval t. Define Z(t) as the
change in return R(t) (equivalent to coordinate translation):

Z(t) = R(t = 0)−R(t) (3)

Probability distribution of return Z is shown in figure 3, with herding
parameter h = 19 (a = 0.05), agent population N = 10000, time interval
t = 10 and 100, and fluctuation parameter r varies from 0 to 60. The
herding parameter h is chosen such that it is near the critical value in figure
2. For small r, there shows a single peak in return, while double peaks for
larger r. The peaks become narrower and farer away from origin because of
the absence of long-range correlation of the magnitude of the returns[7].
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Figure 3: Probability Distribution of returns with N = 10000, a = 0.05 for
different values of r. (a) time steps=10; (b) time steps=100. Adapted from
Ref. [7].

4 Discussion of EZ Herding Model

4.1 Exact solution of EZ model

The distribution of returns prob(R) and the distribution of cluster size prob(s)
are related in that return R is linear to the size of cluster s[5]. On the
other hand, the distribution of returns is equal to the distribution of cluster
multiplied by the size of the cluster which represents the probability to choose
the specific cluster:

prob(R) ∼ R−α ∼ s−α ∼ s ∗ prob(s) ∼ s ∗ s−β (4)

where α = β − 1. We has concluded in previous part the α = 1.5, so that
here β = 2.5. The model can be solved starting from the equation[8]:

dP [l1, . . . , lN ]

dt
= − 1− a

N(N − 1)

N∑
i=1

ilii(li − 1)P [l1, . . . , lN ]−
1− a

N(N − 1)

∑
i<j

2ilijljP [l1, . . . , lN ]

+
1− a

N(N − 1)

N∑
i=1

i(li + 2)i(li + 1)P [l1, . . . , li + 2, . . . , l2i − 2, . . . , lN ]

+
1− a

N(N − 1)

∑
i<j

2i(li + 1)j(lj + 1)P [l1, . . . , li + 1, . . . , lj + 1, . . . , li+j − 1, . . . , lN ]

− a

N

N∑
i=2

iliP [l1, . . . , lN ] +
a

N

N∑
i=1

i(li + 1)P [l1 − i, . . . , li + 1, . . . , lN ] (5)
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Here li is the number of clusters of size i, which the constraint

N∑
i=1

ili = N (6)

P [l1, . . . , lN ] is the probability of finding the system to be in the state [l1, . . . , lN ].
The first four terms on the right hand side of the equation describe the in-
formation dispersion in the system. Two clusters both of size i combined in
the first and the third term, and of different sizes i and j combined in the
second and the forth term. In the last two terms, the selected cluster of size
i acts and dissolves into i clusters of size 1. The average number of clusters
of size i is defined as

⟨ni⟩ =
∑

[l1,...,lN ]

P [l1, . . . , lN ]li (7)

Xie etc.[8] solved this equation in the limit of a ≪ 1√
N
. They got that

∂⟨ns⟩
∂t

= −(2− a)s⟨ns⟩
N

+
1− a

N2

s−1∑
r=1

r⟨nr⟩(s− r)⟨ns−r⟩ for s ≥ 2 (8)

∂⟨n1⟩
∂t

= −2(1− ⟨n1⟩
N

+
a

N

∞∑
r=2

r2⟨nr⟩ for s = 1 (9)

D’Hulst and Rodger[9] got the same equations using mean field approxi-
mation and solved them. Power law decay ⟨ns⟩ ∝ s−α , where α = 2.5, was
found with an exponential cutoff for larger s. A numerical simulation of this
model has been done by D’Hulst and Rodger with parameters a = 0.01 and
N = 104. Though it does not satisfy the assumption a ≪ 1/

√
N , they got

a result of α = 2.7, pretty well matches the theoretical result.

4.2 Finite size limit of EZ model

The limit of a ≪ 1/(N lnN) was studied by Xie etc[8]. In this case, the
information spreads so fast that it is highly possible that all agents in the
system are combined into one single cluster before a cluster acts and breaks.
It leads to the fact that the probability P [0, 0, . . . , 0, 1] approaches unity.
While the probability that the system is in any other state

A =
∑

[l1,...,lN ]

′
P [l1, . . . , lN ] (10)
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Figure 4: s dependence of ⟨ns⟩ for different values of a in a system with
N = 100. Solid lines show the power law relation ⟨ns⟩ ∝ s−α, where α = −3.
Adapted from Ref. [8].

is very small and proportional to a. In mean field approximation, it can be
found that A = Na. Then the s dependence of ⟨ns⟩ can be derived:

⟨ns⟩ = N2a
(2s− 2)!

22s−1s!2
(11)

Using Stirling’s approximation, one can find that ⟨ns⟩ still obeys the
similar power law s−2.5. However, the fluctuation becomes more important
in this finite size limit which makes mean field theory not valid for small a.
More exactly solution shows that in finite size limit, for small s, ⟨ns⟩ obeys

⟨ns⟩ =
N2a

2s3
+O(Na) (12)

By numerical simulation, it can be proved that A ∝ 1
2
Na lnN , which is

inconsistent with A ∝ Na in mean field theory. For small s, the first term
dominates. ⟨ns⟩ follows the power law with an exponent −3 instead of −2.5
given in mean field theory. However, the fact that the second term becomes
considerable when s is large leads to ⟨ns⟩ deviates from power law of s for
large s shown in Figure 4. In figure 4, there is an exponential cutoff for large
s when a < 1/

√
N . It turns to be a bump for large s when a > 1/(N lnN).

The transition between the two phases occurs at a critical value ac, where
1/(N lnN) < ac < 1/

√
N .
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Figure 5: Volatility auto-correlation in log-log scale. Adapted from Ref. [7].
Dashed line: −A(t) for δ = 0, c = 0, b = 0.05, N = 10000; Solid line: A(t)
for δ = 0.8, c = 0.3, b = 0.0005, N = 20000; Circled line: A(t) for δ = 1.0,
c = 0.6, b = 0.00025, N = 40000;

4.3 Interacting EZ model

Herding parameter a or h in EZ model is the only but very important pa-
rameter of the model. In the original EZ model, the herding parameter is
set to be constant. It makes the problem very simple, but lost a crucial
aspect that the financial market is fluctuating. When the market is more
fluctuating, information disperses quickly since people are sensitive to it and
tend to spread information extensively, which makes the herding parameter
a smaller, or h larger. However, parameter a should larger when the market
becomes more stable because people are less fanatic to all kinds of rumors.
Zheng etc.[10] suggested an interacting EZ model such that the parameter a
is changeable:

at = b+ cs−δ
t−1 (13)

Here variable s is the size of the cluster, b, c and δ are all positive con-
stants. Parameter a is smaller (h is larger) when a large cluster becomes
active at a previous step. That means that the speed of information disper-
sion is larger if a large cluster forms and acts.

Figure 5 shows the volatility auto-correlation which is defined as:

A(t) = [⟨s(t′)s(t+ t′)⟩ − (⟨s(t′)⟩)2]/σ (14)

For δ = 0, c = 0 case, the herding parameter is a constant as in original EZ
model. The volatility increases linearly as time goes. s(t) is anti-correlated
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Figure 6: Probability distribution if returns in interacting EZ model. (a)
Simulation from different fluctuation r with N = 10000, b = 0.001, δ = 1,
c = 0.6. Adapted from Ref. [7]. (b) Data from German DAX for 10 minutes
compared with simulation. Solid lines: P (Z, r < 0.1) and P (Z, r > 0.5) of
German DAX data. Dashed lines: simulation of P (Z, r < 0.1) and P (Z, r >
0.5) with δ = 1.0, b = 0.00025, c = 0.6, t = 100. Adapted from Ref. [10].

in time direction, which can be seen that s becomes small after a large
cluster acts and breaks. For δ > 0 when the herding parameter is no longer
a constant, A(t) shows a time correlation relation. Especially for δ = 0,
a power law behavior occurs. This long-range time correlation indicated a
critical point of herding phase transition.

The probability distribution of returns is plotted in figure 6(a). It is
obviously shown that the single peak for small r and double peaks for large
r. The transition happens when 8 < r < 16. Figure 6(b) compares the
simulation result with German DAX data using slightly different parameters.
It shows very good coincidence between two if appropriate parameters are
chosen.

5 Summary

In this paper, I have reviewed the herd behavior and its application in finan-
cial market. With the basic idea of herd behavior that people are more likely
to follow others’ decision, the EZ model describes how information spreads
and people act based on the information. Several phase transition phenom-
ena can be found in this model. Fluctuation r as an order parameter shows
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the single-double peak transition in the probability of returns. Herding pa-
rameter a as an order parameter shows different power law behavior in the
distribution of cluster sizes.
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