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Abstract
In this essay classical localization is discussed within the context of air bubbles
scattering sound waves in water. Analytical theory, computational calculations, and
conclusive properties of the localized state are discussed as well as future avenues
of research.



I. INTRODUCTION

In 1958, at Bell Labs, Philip Anderson conceived of the process of Localiza-
tion in which a transition occurs from a conducting state to an insulating state
by adjusting the density of impurities in a material. Anderson localization,
even after 50 years, is still essentially conjecture. It has yet to be experimen-
tally proven [5]. Many attempts have been made to verify localization but are
met with two types of complications [9]. In quantum systems the difficulties
arise due to the Coulomb interaction dominating the impurities. In classical
systems it is shear (transverse) effects which lead to absorption and obscure
results.

One major goal of current research is unambiguous observation of localiza-
tion, and to do this research has now turned to classical systems. Classical
localization refers to a wave scattering effect where waves become trapped in
regions of space with a high enough density of scattering sites. Early attempts
to model acoustic localization met with success [1] warranting further inves-
tigation. A typical experimental setup includes a medium with controllable
density of impurities (e.g. bubbles of air in water), a wave source (e.g. ul-
trasonic sound waves), and detectors to capture the transmitted waves [4]. In
order to observe localization one must find that the transmitted and reflected
waves do not account for all of the energy released into the system. This brings
us to the major complication in classical experiments: absorption effects.

When attempting to observe localization one must take great care to dis-
tinguish between energy trapped in the form of waves, and energy absorbed
by the system as heat, shear effects, etc [9]. These difficulties are so insur-
mountable that even after so many decades definitive evidence for localization
has not been observed. In terms of theory, however, many interesting results
have been published. In the interest of working towards experimental verifi-
cation of localization we shall focus on one particular theoretical application:
localization of acoustic waves in bubble-water.

II. THEORY

This model comes from a specific series of articles [3,4,5,6] through which
we can understand both how to realize localization, and how to interpret the
ordering. In this system the air bubbles act as hard sphere scattering sites. The
following assumptions simplify calculations without eliminating the important
features of classical localization. In this model we will assume that the bubbles
are randomly oriented in space (they are, after all, interpreted as representing
disorder). Complicated calculations and edge effects can be eliminated as



follows: First let the system be spherical and have the bubbles be all of the
same radius; Then have the source be a wave emanating spherically from the
center of the system. The latter choice helps eliminate reflected waves and
edge (non-bubble) scattering.

Interestingly, the following definitions closely follow some of the lecture
material from class. Lets begin by defining the amplitude and phase at a point
in the system A = A(7). Let the source wave be denoted A(0) = A,.Normalize
this such that the transmitted amplitude has simple form

A
A:A_O
=T = |A]?

Now we can of course rewrite this in terms of amplitude and phase

A(r) = Ae"?

With which we can now write down the form for the wave current

J = Re(A*(—iV)A)

= J = |A]PV0

Giving us the phase gradient reminiscent of the lectures.

This is a good time to analyze classical localization in terms of the given
parameters above. A source wave is formed and then propagates outward
spherically. Each time it encounters an air bubble a ’secondary’ spherical
wave source is created at that location. This happens often and frequently
and after many such instances we find the normal state to be one in which
several overlapping waves constructively and destructively interfere. Now in
terms of the phase field localization occurs when there is a region of space
with the phase at a constant value, and surrounding that region the phase
is abruptly (i.e. with exponentially decaying boundary) 180 degrees out of
phase with the localized region. In this way the wave can only propagate on
itself in that limited region and is always destructively interfered when exiting
the same region [5]. Also note that this must occur with the amplitude not
vanishing, otherwise we only get a trivial system.

In order to clarify the above analysis lets write the phase field as a plane
unit vector. Taking the x-axis to be zero phase we write

n; = cos(6;) + sin(6;)y
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We will also choose the phase such that when a bubble begins emitting
waves we set the phase value to zero. For simplicity we only write arrows
at each bubble site. Finally in these figures the volume fraction of bubbles
is 0 = 0.001 and 100 averages were computed [5]. Now in Fig 1 we find a
series of states with just these pictures. The localization effect only occurs in
a small range of wave frequencies. In order to relate these calculations with
our experimental realization goal we also give the transmission coefficient out
of the sphere as a function of the reduced system size for each state in Fig 1.

We now analyze those three given regimes. The first corresponds to fre-
quencies below the localization. In this regime we can see the phase field
values seem as random as the spacial location of the bubbles. In particular we
find a very high rate of transmission of the source energy for this state. The
situation is similar for frequencies above the localization range. Let k be the
wavenumber of the source and a be the radius of the air bubbles. For values
between

0.014 > ka < 0.060

we find our desired ordered state. The most striking features are the
(nearly) complete coherence of the phases for each randomly located scat-
terer. Recalling that this phase is directly out of phase with the source itself
we turn to the transmission coefficient plot. Here we find a straight line (on
a log plot) which drops by over four orders of magnitude. This signifies the
exponential decay of the transmission due to the localized wave becoming con-
fined within its initial formation location. To see the region of frequencies in
which our ordered state exists we have given Fig 2.

Now although we have shown that localization corresponds to long range
order (in this case the order is in the phases of the scattered waves) and have
found exponential decay of the transmission amplitude in that state we have
avoided addressing the issue of broken symmetry. The reason for this can be
found in the nature of the waves themselves. In this classical, hard sphere
scattering we have been focusing on longitudinal waves. In fact we mentioned
that it is exactly transverse wave effects which detract from clear experimental
observations. As discussed in class the longitudinal components can not result
in the formation of Goldstone bosons (although the transverse direction can)
even upon symmetry breaking. It is a common misconception that longitudinal
components can form Goldstone modes and this article [3] is no exception. Ye
et al. claims that the localization of longitudinal waves results in the formation
of a Goldstone boson in direct contradiction to what has been mentioned here.
This is not to say that a symmetry has not been broken. In particular we see
from Fig 1 that the ordered state of our system results in broken rotational
symmetry of the phase. This continuous symmetry breaking is tempting to
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label with Goldstone modes, but we must take care in the analysis of ordered
phases.

ITII. EXPERIMENT

An important requirement of theory is its connection to experiment. As
stated earlier there are difficulties in realizing the ideal conditions necessary
to observe classical localization. In the case of water we find the flow of air
bubbles to be the largest obstacle. In our simple model we assumed stationary
scattering sites (or instantaneous wave propagation) which is not a good ap-
proximation with a low viscosity fluid. On the other hand, bubble defects in
solids are so tightly constrained that they do not have the hard-core scattering
frequency range necessary for these experiments [8]. One series of articles has
recently begun studying a modified version of the above simple model where
water is replaced by media that hold stationary bubbles (i.e. are elastic like
solids), but are also compressible with very low shear stiffness [8]. Under these
so called 'waterlike’ conditions it is thought that both theory and experiment
can come together in an attempt to answer the question of localization with
low ambiguity.

In particular one article goes beyond the localization calculation to compare
with experimental results for nonlinear wave propagation in soft materials
permeated by bubbles [9]. They find that in the case of vanishing surface
tension the results for our simple model extended to soft media agree with
the results of the effective medium method (EMM). Our simple model does
not account for surface tension, which is responsible for absorption effects as
mentioned in the introduction of this topic. An example of this method is
given in [10].

IV. FUTURE

Up to now we have focused on what has been done to explore classical
localization. Our simplified model has also been shown to suffer from some
important limitations especially where experimental realization is concerned.
The extension of this model to soft media and the use of other methods such
as EMM have helped bridge the theory-experiment gap, but the evidence for
localization at the classical level is mediocre at best. Thus this subject is a
very active field and we can speculate where it might go in the coming years.

First no one has attempted to use a model where transverse waves are local-
ized (and thus allow for the formation of Goldstone modes). Not only would
this be an interesting model to evaluate, but it allows for more experimental
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observations to be made (since one of the principle losses of energy is due to
transverse wave formation). That said, it would be difficult if not impossible
to distinguish between transverse localization and absorption effects. This can
be seen from the simple picture that if a material can form longitudinal and
transverse waves, then the dispersive effect of breaking up energy over and over
into small out of phase components is exactly what we were trying to avoid.
Even with this complication, it would be interesting to search for localized
transverse wave effects perhaps in models (or materials) where longitudinal
waves do not propagate very effectively.

One of the more interesting applications of this research to the physics
community is the possibility of extension into the quantum regime. If data
supporting localization is found in soft materials with percolation then we can
begin to look for analogous quantum models. It is possible that soft condensed
matter systems could show similar effects experimentally. More generally if
we can find a class of materials exhibiting localization then we can predict
localization in quantum analogues. Among other interests this would allow
for a more sophisticated search for true Anderson Localization.
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VI. FIGURES



FIG. 1: On the left are the phase field values for each scattering site. On the right

the transmission coeficient as a function of reduced system radius is given.
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FIG. 2: The transmitted amplitude as a function of wavenumber. Note the reduced
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