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Abstract 

I will review literature that expands the theory that the canonical 
genetic code was not universal in early life.  Instead, the 
rudimentary genetic code and decoding mechanism were highly 
ambiguous, in that mistranslations were made and tolerated.  From 
this early communal state, genetic codes diverged in pools of 
innovation.  Through the interaction and competition of these 
pools, the optimization and universality of the canonical genetic 
code emerged.   

 

 

Introduction 

 All organisms survive by utilizing the information encoded in 
sequences of nucleotides.  The translation of this information into functional 
proteins requires a means of interpretation, which consists of the genetic code 
and the de-coding mechanism.  The genetic code is the mapping from the 64 
triplets of nucleotides (codons) to the 20 naturally occurring amino acids as 
well as sequences that indicate a ‘start’ or ‘stop’ of translation.  When a 
desired sequence of nucleotides is translated by the de-coding mechanism, the 
mapped sequence of amino acids will produce the desired protein that is able 
to carry out a particular function of the organism. 
 After the genetic code was deciphered through the study of Escherichia 
coli (Nirenberg, Clark et al. 1963), it was recognized that the code is 
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universal to all life (Crick 1968).   Recently, variants in the genetic code have 
been documented, but they are all believed to be derived from the canonical 
genetic code (Knight, Freeland et al. 2001).  Inspections of the genetic code 
quickly showed that it has nonrandom structure (Figure 1).  A property of the 
code that is easily recognized is the block structure, where neighboring codon 
sequences (sequences differing by one nucleotide) are assigned to the same or 
similar amino acids.  Almost all proteins we see today are highly specialized, 

 

 
 
 
Figure 1  |  The Universal and Optimized Genetic Code  ( Each box contains 
nucleotide sequence and amino acid (in two abbreviations). )  The table displays 
the mapping from 64 nucleotide triplets to 20 amino acids and start (AUG, also 
coding for Met) and stop (UAA, UAG, UGA - Ter).  This code is (with very few 
exceptions) universal to all life on earth.  Described below are examples of the 
optimality of the genetic code. 
 The block structure is easily noticeable, where codons differing by one 
amino acid tend to be assigned to the same amino acid.  This is thought to 
minimize the effect of translation errors and mutations in the nucleotide sequence 
on the translated amino acid sequence.  Because, if a mistranslation event occurs, 
there is a chance a codon will be mistaken for a synonymous codon.  Similarly, 
codons differing by one amino acid tend to be assigned to similar amino acids.  
This similarity has been best represented by an amino acid’s “polar requirement” 
(Woese, Dugre et al. 1966), corresponding to the shading in the above table. 
 Image from (Koonin and Novozhilov 2009). 
 

UUU [F] Phe

UUC [F] Phe

UUA [L] Leu

UUG [L] Leu

UCU [S] Ser

UCC [S] Ser

UCA [S] Ser

UCG [S] Ser

UAU [Y] Tyr

UAC [Y] Tyr

UAA [ ] Ter

UAG [ ] Ter

UGU [C] Cys

UGC [C] Cys

UGA [ ] Ter

UGG [W] Trp

CUU [L] Leu

CUC [L] Leu

CUA [L] Leu

CUG [L] Leu

CCU [P] Pro

CCC [P] Pro

CCA [P] Pro

CCG [P] Pro

CAU [H] His

CAC [H] His

CAA [Q] Gln

CAG [Q] Gln

CGU [R] Arg

CGC [R] Arg

CGA [R] Arg

CGG [R] Arg

AUU [I] Ile

AUC [I] Ile

AUA [I] Ile

AUG [M] Met

ACU [T] Thr

ACC [T] Thr

ACA [T] Thr

ACG [T] Thr

AAU [N] Asn

AAC [N] Asn

AAA [K] Lys

AAG [K] Lys

AGU [S] Ser

AGC [S] Ser

AGA [R] Arg

AGG [R] Arg

GUU [V] Val

GUC [V] Val

GUA [V] Val

GUG [V] Val

GCU [A] Ala

GCC [A] Ala

GCA [A] Ala

GCG [A] Ala

GAU [D] Asp

GAC [D] Asp

GAA [E] Glu

GAG [E] Glu

GGU [G] Gly

GGC [G] Gly

GGA [G] Gly

GGG [G] Gly

Figure 1. The standard genetic code. The codon series are shaded in accordance with the polar
requirement scale values (Woese et al. 1966b), which is a measure of an amino acid’s hydrophobicity:
the greater hydrophobicity the darker the shading (the stop codons are shaded black).

Even a perfunctory inspection of the standard genetic code table (Fig. 1) shows that the
arrangement of amino acid assignments is manifestly nonrandom (Woese 1965a; Woese 1967;
Crick 1968; Ycas 1969). Generally, related codons (i.e., the codons that differ by only one
nucleotide) tend to code for either the same or two related amino acids, i.e., amino acids that are
physico-chemically similar (although there are no unambiguous criteria to define physicochemical
similarity). The fundamental question is how these regularities of the standard code came
into being, considering that there are more than 1084 possible alternative code tables if each
of the 20 amino acids and the stop signal are to be assigned to at least one codon. More
specifically, the question is, what kind of interplay of chemical constraints, historical accidents,
and evolutionary forces could have produced the standard amino acid assignment, which displays
many remarkable properties. The features of the code that seem to require a special explanation
include, but are not limited to, the block structure of the code, which is thought to be a necessary
condition for the code’s robustness with respect to point mutations, translational misreading, and
translational frame shifts (Chechetkin 2003); the link between the second codon letter and the
properties of the encoded amino acid so that codons with U in the second position correspond
to hydrophobic amino acids (Rumer 1966; Vol’kenshtein and Rumer 1967); the relationship
between the second codon position and the class of aminoacyl-tRNA synthetase (Wetzel 1995),
the negative correlation between the molecular weight of anamino acid and the number of codons
allocated to it (Hasegawa and Miyata 1980; Di Giulio 2005); the positive correlation between
the number of synonymous codons for an amino acid and the frequency of the amino acid in
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to a point where substitution of an amino acid would most likely have 
deleterious effects to the functionality of the protein.  Amino acid 
substitutions due to translation errors or genome mutations would most 
likely result with the amino acid of a neighboring codon.  So, the redundancy 
and neighbor similarity in the block structure has been accepted to minimize 
deleterious effects of amino acid substitutions (Woese 1965; Woese, Dugre et 
al. 1966).  To investigate the optimality of the canonical genetic code with 
respect to the cost of translation error, comparisons were made against 
randomly generated codes.  Though there is not a universal measure that 
assesses how translation errors are deleterious to the organism, it is accepted 
that the canonical genetic code is optimized to a surprising extent (Haig and 
Hurst 1991; Freeland and Hurst 1998; Novozhilov, Wolf et al. 2007; Butler, 
Goldenfeld et al. 2009). 
 The discovery of the universality and optimality of the genetic code 
only promotes questions on its origin.  The origin of the code has been 
postulated to be: (1) a ‘frozen accident’, where after the 20 amino acids had 
been incorporated into the code any changes would be lethal (Crick 1968), (2) 
a result of stereo-chemical interactions of the amino acids and codons, (3) a 
result of selection for translation-error minimization (Woese 1965; Koonin 
and Novozhilov 2009), and (4) the result of co-evolution of the code with the 
synthesis of novel amino acids (Higgs 2009).  The code’s recently calculated 
optimality seems to suggest a period of evolution (Butler, Goldenfeld et al. 
2009).  The above theories are not mutually exclusive, or exclusive with 
respect to a period of code evolution.  Additionally, recent examples of code 
variants (believed to be derived from the canonical code) suggest that the 
code is not frozen and still evolving (Knight, Freeland et al. 2001).  There is 
still the need for an experimentally based or rigorous explanation for the 
observed universality and optimality. 
 The universality of the code suggests that the period of significant 
evolution would have been during the time of the Last Universal Common 
Ansestor (LUCA).  A suitable theory of the code’s evolution also requires a 
suitable understanding of the nature of this time.  Phylogenic studies have 
uncovered the prevalence of horizontal gene transfer (HGT) in early life.  In 
this time, the evolutionary dynamic of organisms was significantly different 
that Darwinian (or, ‘vertical’) evolution.  Instead of speciation, a communal 
state evolved as biological innovations were shared (Woese 1998).  With the 
knowledge of such a different evolutionary dynamic during the period of early 
life and before LUCA, new theories can be shaped about how the genetic code 
came to be. 

Hypotheses for the code’s evolutionary dynamic 

 Recently, it has been postulated that HGT provided evolutionary 
pressure that produced the universality and optimization of the genetic code.  
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It has been suggested that the precision of the genetic code and decoding 
mechanism coevolved from a rudimentary communal state.  The communal 
state would encourage the use of shared protocols, or genetic codes.  Through 
the interaction of communities using different protocols, the codes would 
converge.  The central hypothesis investigated is that the universality of the 
genetic code may have been a necessary condition for life to evolve into the 
complex state capable of undergoing a Darwinian transition, and that 
horizontal gene transfer is the interaction mechanism by which the universal 
genetic code emerged (Syvanen 2002; Vetsigian, Woese et al. 2006).  
Vetsigian et al 2006, pursued this hypothesis using computational 
simulations to predict the code’s evolution, through a dynamic of innovation 
sharing.  This paper predicts that this dynamic inevitably leads to the 
observed universality and optimization.  The predictions of these simulations 
will be the focus of this review. 
 Since the 1960’s, it has been fairly postulated that the progenote is a 
most rudimentary organism, containing simplified versions of the translation 
machinery that we know to currently be an intricate complex of 
macromolecules (Woese 1965; Woese 1998; Vetsigian, Woese et al. 2006).  A 
simplified version of the translation machinery is argued to necessarily be 
less accurate in the assignment of nucleotide sequences to amino acid 
sequences.  However, this ambiguity would be tolerated and embraced in 
early life.  Sets of codons would be translated to sets of amino acid sequences, 
giving rise to the concept of “statistical proteins”.  The communal state of 
these organisms would contain very high mutation and genetic exchange 
rates, where “essential functions” such as DNA replication, translation, and 
protection from genetic exchange were still being developed.  So, innovations 
made by chance could be globally distributed, which shapes the evolutionary 
dynamic of this period of early life (Woese 1965; Woese 1998). 
 The sharing of innovation requires a common protocol, or a shared 
genetic code.  Cells that use the same genetic code will be able to share 
genetic material freely.  A large community of cells would be able to produce 
niches that have specialized in diverse ways.  Thus, a large and diverse 
community using the same genetic code would be able to produce and share 
more innovations.  When communities of cells with different genetic codes 
come into contact, genetic material can be transferred through HGT, but a 
process of conversion must take place for the incorporation of the innovation.  
The host’s translation machinery must undergo a “detuning” process to 
attempt to accept the transferred gene.  It is beneficial for the foreign gene to 
be shifted into the host’s code (references for detuning processes in Vetsigian 
et al. 2006).  The result would be the incorporation of the innovation into the 
host and the slight modification of the host’s code to be more able to interpret 
the innovations of the new community.  Under these assumptions, the codes 
are attractive: the more similar the codes, the easier it is for the innovations 
to be incorporated and for codes to converge.  Because larger communities 
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have access to more innovations than smaller ones, the genetic code of the 
larger community will generally be able to out-compete that of the smaller 
ones.  So, interactions of genetic codes through HGT are predicted to 
inevitably give rise to a universal code (Vetsigian, Woese et al. 2006). 
 In addition to the interaction between communities using different 
genetic codes, the transference of translation machinery will participate in 
the evolution of the genetic code.  If the components of the translation 
machinery are considered to be subject to the discovery of more optimal 
configurations and modifications, the optimality of the code is an evolvable 
characteristic as well.  Innovations of the translation machinery can be 
spread throughout communities, and can be assumed to be accepted because 
of the universal benefit of optimality for all genetic codes (Vetsigian, Woese et 
al. 2006). 
 The main hypothesis of these papers is that the universality and 
optimality of the genetic code are not strictly due to stereochemical codon-
amino acid assignment or a “frozen accident”.  Instead, these characteristics 
are primarily the result of the genetic code’s evolutionary dynamic shaped by 
the interactions of different codes through HGT.  Through these interactions, 
the universal genetic code emerged capable of allowing the accelerated 
exchange of innovation ultimately resulting in the evolutionary dynamic of 
vertical decent. 

Methods 

 The above hypotheses were tested using computational simulations of 
coevolving species each consisting of a genome and a genetic code.  All of the 
species communally evolve, sharing innovations (in this case, beneficial 
outcomes of mutation and code evolution) through HGT (Vetsigian, Woese et 
al. 2006).  The algorithm describing the co-evolution of the genome and 
genetic code was based on previous simulations (Sella and Ardell 2002).  The 
principle goal is to present a mechanism that results in universality and 
optimality of the genetic code.  The hypothesized dynamical nature of early 
life described above was represented in the following way. 
 The genomes of individual species are subject to genetic mutations and 
selection pressure.  Each species starts with randomly assigned genetic codes. 
To simulate the dynamic of HGT, a fraction of each genome is replaced by 
foreign genetic material from random donors.  The acceptor then attempts to 
make an incremental change to the code to make beneficial use of its newly 
composed genome. 
 The optimality of the codes was quantified by scoring the assigned 
amino acid similarity between related codon sequences.  Simulations were 
done with and without horizontal gene transfer for comparison. 
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Results 

 The primary results of the simulation are that they demonstrate HGT 
as a mechanism that will lead inevitably to the convergence of interacting 
genetic codes.  The probability of universality depends on the degree of HGT 
considered in the simulations, but it is one after a threshold HGT value.  
Interestingly, the simulations also demonstrate that the genetic codes 
initially diverged as they gained complexity and specificity.  The codes (or, 
code in the case it is universal) are optimized to a much greater extent in the 
presence of horizontal gene transfer.  As a comparison, the simulations 
performed with no horizontal gene transfer similarly diverged and were 
optimized to an extent, but remained disparate and consequently resulted in 
less optimal codes.   
 

 
 
Figure 2  |  Collective evolution of the genetic code due to HGT  Figure 
from Vestigian et al. 2006.  The co-evolution of genetic codes with and without 
HGT are shown above.  Over time, genetic codes converge and optimize in the 
presence of HGT (blue).  Without HGT, simulations of genetic codes show slight 
optimization, but do not converge (red).  Inset shows how genetic codes initially 
diverge.  In the presence of HGT codes will converge (blue), and codes without 
HGT will remain different (red).  The histogram on the right is the optimality 
distribution of randomly generated codes.  These trajectories display the 
emergence code universality through the interaction of HGT. 
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where the product is over all genome positions and !(x) is the
amino acid at position x.

Codon Usage. Since different positions belonging to the same site
type are phenotypically indistinguishable in the model, we can
describe the genome by the matrix {usc} that specifies the frequency
of codon c among sites of type s.

Genome Fitness. Accommodating the probabilistic nature of trans-
lation, we set the fitness of a genome to be the average of the
proteome fitness score over many translations, i.e., f % &A'. Since
translations of different codons are independent,

f!"c!x#$, code# " !
x

&W!!x#,s!x#' " !
x

Fs!x#,c!x#. [4]

Putting everything together and switching from codon sequence
to codon usage representation, we end up with

f!code, "u$# " !
c

!
s
# $

c(

Tcc(Waa!c(#,s% Lsusc

. [5]

Equilibration of Codon Usage. Given the matrix of mutational effects
{Fsc(code)}, defined above, what is the codon usage {usc} in an
asexual population of an infinite size and large genomes at a
mutation selection equilibrium? Mutational pressure is character-
ized by the matrix Mcc( specifying the probability that codon c will
mutate into codon c( in one generation. It is assumed independent
of the site type and genome position. Any mutational biases could
be incorporated in Mcc(. Here, we focus on equally probable single
nucleotide changes. In this case,M is specified by a single parameter
#, which is the probability for a mutation at a given site in one
generation. Following Sella and Ardell (24), the codon usage at a
site of type s is given by the eigenvector corresponding to the largest
eigenvalue of the matrix

Qcc(
!s# " Mcc(Fsc(. [6]

The matrix Q reflects the application of selection followed by
mutation.

The parameters of the model described above areNs, the number
of site types; Na, the number of amino acids; the Na ) Ns matrix W;

and a vector {Ls}, specifying the relative frequencies of the different
site types, the mutation rate #, and the mistranslation rate $.

Model Dynamics. Now we consider an ensemble of populations
with different codes and present the dynamics.

1. There are N entities, each with its own genetic code aa(c) and
codon usage usc.

2. At each step an entity, the acceptor, and K random donor
entities are chosen at random. The acceptor codon usage is
updated according to the rule

&1 %
H
K $

k%1

k

Pk'usi &
H
K $

k%1

K

Pkusi
!k#3 usi, [7]

where usi
(k) is the codon usage of donor k, and pk is some measure

of the compatibility between the donor and acceptor codes
expressing the probability of acceptance. Here, we study the case
with no barrier to HGT of coding regions, i.e., pk % 1. H is the
fraction of the acceptor genome that is a mosaic due to HGT.

3. We attempt to change the code of the acceptor. We examine in
random order the possible elementary changes of the code until
we find one that is acceptable or exhaust all of the possibilities.
We accept a candidate change if it increases or at least preserves
the fitness, calculated by using the mosaic codon usage {usc} and
Eq. 5. An elementary code change reassigns a single codon to
a different amino acid.

4. We equilibrate the acceptor codon usage by finding the
eigenvectors corresponding to the largest eigenvalues of the
matrices Qs.

5. We repeat the cycle.

The CIP mechanism, which clearly facilitates universality (and
given enough time generically leads to universality), is factored
out from the simulations to concentrate on the code attraction
mechanism. Each evolving entity in the ensemble can be thought
of as a different ‘‘species’’ (or ecotype). While within each
species the evolution proceeds through invasions of code variants
with higher fitness, the different species are stable and their
number is fixed, thus blocking the CIP mechanism.

Results: Genetic Code Coevolution Toward Optimality
and Universality
We evolved ensembles of codes with and without HGT and
measured the time evolution of the average distance between codes

Fig. 1. Communal evolution toward optimality of 80
codes with (blue) and without (red) HGT of coding
regions. There is no barrier to HGT between different
codes. The initial conditions are the same for both runs.
Parameters: H % 0.4, ' % 0.99, # % 10*4, $ % 0.01. (A)
Time development of the average amino acid distance
between neighboring codons, a proxy for code optimal-
ity. (B) Probability distribution histogram of code opti-
mality for randomly generated codes. The horizontal
axis is the frequency with which a given code optimality
occurs; the vertical axis is the same as in A. (C) Time
development of the average distance between codes.

10700 ( www.pnas.org)cgi)doi)10.1073)pnas.0603780103 Vetsigian et al.
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Discussion 

 Vetsigian et al. 2006 expands upon previous computational studies of 
the evolution of the genetic code, incorporating recent evidence for collective 
evolution before the onset of Darwian evolution.  These simulations provide a 
basis for understanding the observed optimality and universality of the 
genetic code by demonstrating that they could have emerged generically from 
the dynamical interactions of the communal state.  This paper also provides 
an appealing picture of the biological state before the onset of vertical 
evolution.  After the genetic code has evolved to a universal state, horizontal 
gene transfer would allow exponential increases in complexity.  This would 
lead quickly to the Darwinian transition, where vertical descent is more 
beneficial (Vetsigian, Woese et al. 2006). 
 The results of the simulations provide evidence for the predictions set 
by the authors.  To describe the system in more detail, the authors do list 
mechanisms that can be incorporated in future simulations.  To accurately 
simulate the hypothesized rudimentary progenote, one would attempt to 
include the translational components as evolvable mechanisms.  Also, to 
accurately depict the theoretical environment above, the competition between 
codes would have to be included in the dynamics, where codes can be 
completely integrated into another.  However, this most likely would 
reinforce the universality conclusion of the simulations. 
 These simulations did show that the genetic code was optimized to a 
great extent in the presence of horizontal gene transfer.  Most importantly, 
these simulations provided a demonstration of how the code’s (previously 
very elusive) properties can generically emerge from simple interactions.  
This result is consistent with the theory that the origin of the canonical 
genetic code is a mixture of the ‘frozen accident’ hypothesis and translation-
error minimization. Predictions of the degree of optimization and the 
structure of the codon table will have to come from more specific simulations. 
Simulations with these aims have been pursued, incorporating the code’s co-
evolution with speculated non-biological amino acid formation and 
biosynthetic pathways (Higgs 2009).  These simulations have predicted that 
the genetic code evolved from a base set of amino acids.  Under these 
assumptions, the block structure is an inherent property of the codon table.  
When a new amino acid is incorporated, a block of a similar amino acid is 
sub-divided.  With further detail incorporating into simulations, it seems 
possible to find elements of interactions from all existing theories. 
 The integration of co-evolution of the code and amino acid synthesis 
with HGT would be an interesting, and complicated, line of research.  It 
would be interesting to see how this temporal progression of increase in 
amino acids would perform in a simulation with the communal dynamic in 
the articles discussed above.  The development of the universal code seems 
like it would depend on how the new amino acid is placed into the codon 
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table: either deterministically, or stochastically.  In the deterministic case, 
where it is placed in the block of the most similar amino acid, it seems most 
likely that code universality would occur much more quickly.  If the 
placement occurs stochastically, each time an amino acid is introduced it 
would seem that the codes would undergo a period of diversification, similar 
to that seen in the simulations in the surveyed paper. 

Summary and Conclusion 

 A detailed explanation for the origin (and perhaps the current 
trajectory) of the genetic code is still not complete.  Surprisingly, most of the 
theories of the origin of the genetic code were made shortly after it discovery, 
about 40 years ago.  Mechanisms of: a ‘frozen accident’, stereo-chemical 
interactions, co-evolution of amino acids, and translation-error minimization 
all could play a role in how the canonical genetic code came to be universal 
and optimized.  It seems that many questions remained because, besides the 
code itself, there is little evidence we could gather about early life. 
 However, the evidence for HGT in the deep past produced a new 
environment for how the canonical genetic code’s optimality and universality 
could be explained.  In Vetsigian et al. 2006, HGT was integrated into 
previous genetic code evolution algorithms to predict how interactions of 
organisms could lead inevitably to an optimized, unified protocol for sharing 
innovation, the genetic code.  The simulations predict that interactions not 
involving HGT would become diverse and slightly optimized, but not to the 
extent of those including HGT.  These findings strongly support the theory of 
a communal state made of rudimentary organisms, where the fundamental 
process such as translation and replication were still evolving.  From this 
communal state evolved a universal code that could produce the complexity of 
life that we see today.  However, a full understanding of the structure, 
optimality, and evolution of the genetic code requires much more 
experimental evidence. 
 It is becoming quite clear that understanding biological complexity 
requires a shift from reductionist approaches to an approach studying 
systems and collective phenomenon.  This is demonstrated in Vetsigian et al 
2006, where simulations were used to predict emergent characteristics from 
the interactions known to have existed in the early communal state. 
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