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Abstract

High-energy experiments have shown that the electron is a point-like particle
with spin-1/2 and electric charge -e. In highly correlated condensed matter systems
these two properties can decouple in the lowest level excitations with the creation
of two new quasiparticles: spinons (which carry spin) and chargons (which carry
electric charge). I investigate the conditions under which this phenomena occurs,
how common it is in nature and the experimental evidence for it, as well as look
at the frontier in both theory and experiment in two-dimensional systems such as
high-temperature superconductors and cold atom experiments.
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Introduction

Quasiparticles naturally arise in nearly every condensed matter system due to interac-
tions between the constituent “real” particles. While these particles are not real in that
their existence is totally dependent on the many-body effects of the system and cannot be
removed from the system, they can and do affect the physics and dynamics of the systems
in which they arise. Also, like physical particles, quasiparticles have properties such as
mass, spin, charge, momentum, etc. which are not required to match those of the under-
lying physical particles. One of the most unique examples of quasiparticle emergence is
the case of spin-charge separation. Wherein a system (typically a gas of electrons) has two
different quasiparticles: spinon, which carry spin and chargons which carry electric charge.

Figure 1: A schematic of a lattice of dimers.
They are arranged so that the entire plane has
charge -Ne and zero spin [2]

This is perhaps best understood through a
series of cartoons [2]. Consider a square lat-
tice of electrons with one on each site. The
electrons are paired in singlet states, and
therefore have 0 spin (see figure 1). This
system has electric charge -Ne and spin 0.
Suppose we unpair two of the electrons (fig-
ure 2), then the total system still has charge
Ne, but has spin 1. By doing this we have
created two spinons with spin-1/2. So de-
spite the fact that in the underlying system
charge and spin come together in an elec-
tron, we can create quasiparticles that while
not carrying electric charge, can carry spin.
Likewise, suppose we remove our unpaired
electrons, and create two holes. Now the sys-

tem again has 0 spin, but electric charge -(N-2)e, so we have created two holons (chargons
with positive electric charge) with electric charge +e. In this paper I seek to answer a

Figure 2: (A) Example of a system with two spinons, this is made by unpairing two of the
electrons so that they are no longer in the spin-singlet state. Note that the system still has
charge -Ne, so the excitations must not have any electric charge. (B) Example of system with
two holons made by removing two electrons. The total system has zero spin, so the excitations
have zero spin.[2]

few key questions about spin-charge separation. First, do actual real systems exist that
exhibit this behavior? How universal is the emergence of spin-charge separation? And
finally, what can studying the dynamics of spinons and holons tell us about novel con-
densed matter systems, such as high-temperature superconductors?

I will do this by demonstrating through bosonization that for one-dimesnional sys-
tems, spin-charge separation is a general phenomena, at least in the theory. With this
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theoretical motivation, I continue by examining three systems of experimental interest:
quantum nanowires, which are Tonomonaga-Luttinger Liquids and also of great practical
interest for applications in computing and nanotechnology, polyacelyelene a long organic
molecule of carbon and hydrogen atoms where the defects that divide the two degenerate
ground states can create excitations that carry charge or spin but not both, and lastly we
will look at SrCuO2, where studies have shown that systems that are weakly correlated
in two-dimensional systems become highly correlated in one-dimensional systems and
therefore charge-spin separation emerges in these one-dimensional substances [4, 5, 7, 6].

These three experimental examples were also chosen because they use very different ex-
perimental techniques, yet all have confirmed spin-charge separation. The quantum wire
experiment measured conductance and inter-wire tunneling to obtain a direct measure-
ment of the spinon and chargon dispersion relations. The work with SrCuO2 has recently
obtained direct observations of two energy-momentum relations as well, but through a
process known as angle-resolved photoemission, in which high energy photons knock elec-
trons out of the substrate and measure their speed and direction to obtain information
about the excitations in the substrate. In polyaceltene, the focus is on detecting the
lowest-energy excitations and calculating the spin and charge of these excitations. This
is done with nuclear mangenetic resonance and measurements of electrical conductivity
after chemical treatments, and has conclusively shown that both types of excitations exist
independently.

I also discuss the experimental frontier, ultracold trapped atoms [9, 12]. These sys-
tems will provide cleaner and more controllable experiments than are currently available;
however understanding the complex multi-body interactions and effectively trapping large
numbers of fermions are both areas of current research. And finally we discuss the impli-
cations of this on high-temperature superconductivity, which is a problem that despite
immense physical and practical interest has eluded scientists for years [10]. Theoretical
models have predicted that this two-dimensional system may be one that has spin-charge
separation, but more recent work has discounted some of the possible theories [1, 13].

Bosonization and Spin-Charge Separation

We will derive the key result of this paper in the low-energy limit (i.e. |k| ∼ kF ) through
a technique known as bosonization. Our results are in fact more general than they appear
here, and are useful over a large energy range. However we will restrict ourselves to this
limit for simplicity. Our work follows closely the derivation found in [3]. Bosonization is
a technique in which a quartic Hamiltonian can be transformed into a quadratic one by
pairing fermionic excitations into bosonic ones. It is a very general technique for studying
highly correlated systems and is often the technique that is used to show that spin-charge
separation does occur, even in higher-dimensional systems (however for simplicity we will
limit ourselves to the one-dimensional case).

Our Hamiltonian is made of two parts, a kinetic energy component and interaction
terms. Because we are only interested in the limit k ∼ kF , where kF is the Fermi wavevec-
tor, our kinetic energy part in linear (this regime is that of the Tomonaga-Luttinger Liquid
(TLL))

Hkin =
∑
r=R,L

∑
σ=↑,↓

∑
k

vF (εrk − kF )c†r,k,σcr,k,σ (1)

where R stands for right moving (k ∼ kF ) and L stands for left moving (k ∼ −kF ), εr
takes the values εR = +1 and εL = −1, vF is the Fermi velocity and c† and c are the
fermionic creation and annihilation operators. We define the density fluctuation operator
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by

ρr,σ(q) =
∑
k

c†r,k+q,σcr,k,σ

Now this operator is a bosonic operator since it is made of two fermionic ones. It is a
logical choice for our Hamiltonian because it has a well-defined kinetic energy, namely
Eq = ±vF q for right and left moving particles respectively. Next we consider how this
operator acts on the vacuum, most importantly

ρ†L,σ(q > 0) |0〉 = 0 and ρ†L,σ(q < 0) |0〉 = 0

it suggests we should define the bosonic creation and annihilation operators from these
operators as

b†(q, σ) =

√
2π

L|q|
∑
r

Θ(rq)ρ†r,σ(q) and b(q, σ) =

√
2π

L|q|
∑
r

Θ(rq)ρ†r,σ(q) (2)

where Θ(x) is the typical heavyside step function

Θ(x) =

{
1 x > 0
0 otherwise

}
With our new definition, we can compute the commutation relations for b(q, σ) and our
Hamiltonian. We see

[b(q, σ), H] = vfqb(q, σ)

and also obtain similar results for b†(q, σ). If we assume completeness of the b‘s, we can
write our kinetic Hamiltonian in terms of only the b‘s. The simplest way this can be done
is

H =
∑
p 6=0,σ

vF |p|b†(p, σ)b(p, σ) +
πvF
L

∑
r

Nr (3)

where Nr is the total number of left (or right) moving electron hole pairs. For the
interaction part of the Hamiltonian it is more convienent to work in position space rather
than momentum space. So we get

ψr,σ(x) =
∑
k

eεrkxc†k (4)

ρr,σ(x) = ψ†σ,r(x)ψσ,r(x) (5)

We can likewise Fourier transform the bosonic operators (equation 2) and we find two
bosonic fields φσ(x) and θσ(x) given by

φσ(x) = −(NR +NL)
πx

L
− iπ

L

∑
p

√
L|p|
2π

1

p
e−α|p|/2−ipx(b†(p, σ) + b(−p, σ)) (6)

θσ(x) = (NR −NL)
πx

L
+
iπ

L

∑
p

√
L|p|
2π

1

p
e−α|p|/2−ipx(b†(p, σ) + b(−p, σ)) (7)

where α serves as a regulator. So one should consider the limit α → 0 only; however a
finite α helps account for finite bandwidth which is present in experiment [3].
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If we wish to find expressions for ρr,σ(x) in terms of φ and θ, we need to note that

[φσ(x),∇θσ(y)] = i

∫ ∞
0

dp cos(p(x− y))e−α|p|

= iπδ(x− y)

which allows us to make the identification of the conjugate momentum to the field φσ(x)

Πσ(x) =
1

π
∇θσ(x) (8)

and likewise for the field θσ(x)

πσ(x) =
1

π
∇φσ(x) (9)

Using equations 6, 7, 8, and 9 we have

ρr,σ(x) = − 1

2π
[∇φr,σ(x) + εr∇θ(x)] (10)

For the interaction part of the Hamiltonian, we will only consider the lowest-three possi-

Figure 3: The dominant
low-energy interactions
are divided into three
different types (labeled,
for historical reason by
gi). In theories with
spin (such as ours), each
gi can take two values
gi‖ and gi⊥ depending
if the spins are in the
same direction (gi‖) or in
opposite direction (gi⊥)[3]

ble terms, with momentum exchange, q, q ∼ 0 and q ∼ 2kF (see figure 3 for the diagrams
of these interactions). These terms have the form

H1 =

∫
dx g1‖

∑
σ

ψ†L,σψ
†
R,σψL,σψR,σ + g1⊥

∑
σ

ψ†L,σψ
†
R,−σψL,−σψR,σ (11)

H2 =

∫
dx g2‖

∑
σ

ψ†R,σψR,σψ
†
L,σψL,σ + g2⊥

∑
σ

ψ†R,σψR,−σψ
†
L,−σψL,σ (12)

H4 =

∫
dx g4‖

∑
σ,r

ψ†r,σψr,σψ
†
r,σψr,σ + g4⊥

∑
σ,r

ψ†r,σψr,−σψ
†
r,−σψr,σ (13)

We wish to diagonalize this Hamiltonian. The first step is to define the total spin and
total charge density

ρ(x) =
1√
2

[ρ↑(x) + ρ↓(x)]
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σ(x) =
1√
2

[ρ↑(x)− ρ↓(x)]

With this definition, we get the following new boson fields

φρ(x) =
1√
2

[φ↑(x) + φ↓(x)]

φσ(x) =
1√
2

[φ↑(x)− φ↓(x)]

Using our above definitions we find

Hkin = 1
2π

∫
dxvF [(πΠσ(x))2 + (∇φσ(x))2] + vF [(πΠρ(x))2 + (∇φρ(x))2] (14)

H1 =
∫
dx(−g1‖

∑
σ[ρL,σ, ρR,σ] + g1⊥

2(πα)2
cos(2

√
2φσ(x)) (15)

H2 = 1
4π2

∫
dx[g2‖ + g2⊥][(∇φρ(x))2 − (∇θρ(x))2] + [g2‖ − g2⊥][(∇φσ(x))2 − (∇θσ(x))2](16)

H4 = 1
4π2

∫
dx[g4‖ + g4⊥][(∇φρ(x))2 + (∇θρ(x))2] + [g4‖ − g4⊥][(∇φσ(x))2 + (∇θσ(x))2](17)

(18)

So we see that our Hamiltonian breaks into two parts: a charge-density part and a spin-
wave part, so we can write

H = Hρ +Hσ (19)

Since these two parts of the Hamiltonian are independent and do not interact, that
means these theories span a Hilbert space made of two separate spaces: one for spin-waves
and the other one for charge-density waves. These two excitations are therefore totally
separate and will move independently of one another [3].

Our above derivation is very general in the low-energy limit. We did not make any as-
sumptions about the substance other than 1) there exists as a well-defined Fermi wavevec-
tor and velocity (which is generally true for fermionic systems by the Pauli Exclusion
Principle) and that 2) we are only interested in excitations near that Fermi-level.

Polyacelyelene

Polyacelyelene is a long hydrocarbon lattice. In the ground-state, the lattice breaks
into two sub-lattices, we will call them A and B, with the carbon atom offset from the
standard lattice point by a small amount either to the right (for lattice A) or left (lattice
B). This splitting causes there to be two degenerate ground states, depending on which
lattice moves right or left (see figure 4). The lowest-level excitations, called solitons, are

Figure 4: A schematic diagram of
the two degenerate ground states of
polyacelyelene, note how the carbon
atoms are moved slightly from their
expected ground-state positions [4]

topological in nature and represent bond changes when going from one of the degenerate
ground states to the other. This permits three possible lowest-energy states: two charged
soliton states with charge +e or -e (holon or chargon respectively) and no spin, and an
uncharged soliton state with spin-1/2 (figure 5). Since there are two main types of solitons
charged solitons (chargon and holons) and uncharged (spinon), experiments have taken

6



Figure 5: The three lowest energy exci-
tations for polyacelteyene. (left) A holon
with no spin and electric charge +e. (cen-
ter) A spinon with no electric charge and
spin-1/2. (right) A chargon with no spin
and electric charge -e. [4]

different techniques to find these two states. Neutral solitons are studied using nuclear
magnetic resonance [4]. These studies have demonstrated that these solitons do exist,
and are uncharged. While, the existence was easy to demonstrate, showing that these
are indeed without charge was more difficult. The key experiment was to compensate
for the electrical conductivity with ammonia. While the number of charge carriers and
electrical conductivity both decreased dramatically, the number of spins did not change
[4]. Charged solitons are primarily investigated through one of three signatures [4]. The
first is through the formation of localized phonons. These states have a characteristic
vibrational mode that is dominant in the infrared. The next is through the generation
of a midgap state and and the electronic transitions that induces. This again is observed
in the near-infrared. The last is through charge storage in spinless solitons, which can
be proved with electron-spin resonance experiments. This has been done and the ratio of
the number of spins to number of charges has been found to be quite small Ns/Nq << 1).
So both types of solitons have been extensively studied and demonstrated through both
direct and indirect means as existing.

Quantum Wires

Much of the experimental interest in spin-charge separation is in its implications for
nanowires and computation, so there is a relatively large amount of experimental work
done on these systems. These systems are some of the simplest manifestations of the
Tonomonaga-Luttinger Liquids as often the underlying lattice is unimportant and the
motion of the electrons can be considered as a one-dimensional sea of electrons. The
experiment consisted of many 17.5µm long nanowires of lithographic width .17µm (see
figure 6). The ends of the wires were attached to gates that could control voltage. The
conductance through the wires was then measured using a two dimensional Fermi-gas.
This was chosen to allow the probe to obey different physics than the experimental
apparatus . A tunable magnetic field was place across the wires to change the spectral
overlap between the wires and see how that influenced tunneling between the wires.
The different dispersion relations for holons and spinons should manifest themselves in
measurements of the conductance, G, at different gate voltages and magnetic field values.
To better emphasize the changes in G with magnetic field, often dG/dB is plotted instead
(this also follows the dispersion relations).

Figure 6 compares dG/dB in theory and experiment. The experimental data 6B
clearly has a feature (denoted by a red line) that does not match the theoretical predic-
tions of the non-interacting theory. This feature is identified as the chargon distribution,
and is predicted by the TLL theory (figure 6E.

There are two key features of the dispersion relations shown in figure 7. The first is
that of the one-dimensional parabola. This comes from the spin excitations since these
have a velocity that is roughly the same as the Fermi velocity. The second is a step linear
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Figure 6: A comparison of dG/dB for theory and experiment. (A) The noninteracting plot.
The singularities follow the non-interacting parabola, which is as expected. (B) Experimental
results. The experimental data clearly does not follow the non-interacting parabola, which is
to be expected. (C)Calculation of G and (D) dG/dB for the non-interacting and TLL models.
(E) The predictions of TLL theory. This has the same features as the experimental result, we
identify S as the spinons and C as he chargons. (F) Schematic of wire-tunneling experiment to
measure spin-charge separation. The signs on the gates denote voltage sign. [5]

Figure 7: (A and B) Color-scale plots of
G versus V and B at two different tem-
peratures. The black dotted line repre-
sents expected singularities in G, as pre-
dicted from the noninteracting theory,
while the green lines are from 2D-2D
tunneling. There are two features that
are no predicted in the non-interacting
theory, the first is the marked abrupt
change in G, and the other is the zero
bias (labeled ZBA). (C) dG/dB. The
straight red line is clearly not part of
the 1 or 2 D dispersion, and is identified
with the chargon, while the 1-D disper-
sion relation is from the spinon. [5]

relation that is caused by the chargons. We would expect this since the chargons have a
much higher velocity, and can therefore identify the sources of both dispersion relations.
The plots of G (figures 7 A and B) show that two features that cannot be explained by
a non-interacting theory. The first is that at zero bias, G is highly suppressed, while the
second is an abrupt change in G.

Also, this experiment was able to observe spin-charge separation well past the low-
energy limit (and hence beyond the linear-kinetic energy regime in which the TLL model
should be valid). Renormalization-group calculations have suggested this, as higher order
perturbations only lead to renormalizing the TLL parameters.
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SrCuO2

In one-dimensional systems all excitations are highly correlated since atoms cannot move
without encountering other particles. This leads to the break down of Fermi-liquid the-
ory in one-dimension, so if a system does not exhibit spin-charge separation in two-
dimensions, it is reasonable to assume it will in one-dimension. This has been tested
experimentally using a one-dimensional and two-dimensional strontium compounds [7].

The experiment used angle-resolved photoemssion to measure the energy versus mo-
mentum relationship for SrCuO2, which due to weak inter-chain coupling between is
nearly a one-dimensional system, and compared that two literature measurement made
for the two-dimensional. Sr2CuCl2O2.

Figure 8: E vs k relationship for the one
and two-dimensional case. Note that in
the one-dimensional case there are two
bands in the range π/2 < k < π, while
there is only one for the two dimensional
case. [7]

One of the most striking results of this experiment was the difference in energy versus
wavevector for the one-dimensional SrCuO2 versus the (previously observed) data for
the two-dimensional Sr2CuCl2O2 (see figure 8). In the regime k ∼ π two bands appear,
which is indicative of spin-charge separation, however there is some uncertainty about
the values of these points due to their weak signal [7].

Another experiment using SrCuO2 studied the the spinon and holon dispersions also
using angle-resolved photoemssion [6]. In angle-resolved photoemission, electrons are
knocked out of the substance, and the angle and speed of the removed is measured. For
typical substances where spin-hole separation does not occur, the resulting holon should
simply move around and a single excitation spectrum exists. However, in spin-charge
separation occurs, the created holon will decay into a spinon and holon (without spin),
and causes the creation of two branches with edge singularities.

While the technique of angle-resolved photoemission should be able to resolve two
different peaks and provide direct evidence for spin-charge separation, direct observation
was quite difficult until recently. Unlike previous groups, Kim et al. used high-energy
photons that had previously not been possible, which allowed them to excite electrons
beyond the high-energy oxygen states that exist in SrCuO2 [6]. The result was two
peaks in the energy distribution curves for k‖, the momentum parallel to the plane of
the substance. The quickly fading peak was associated with the holon, while the slowly
decaying peak with the spinon (figure 9). In the raw data the two peaks are clearly visible
(figure 9) which are due to the dispersion of chargons and holons. The relative widths
are plotted using a shown background that rises with energy [6].

There are two main features that cannot be described by the theory. The first is
the part of the spectrum that is shown in green figure 9A. Another aspect of the found
function that cannot be explained by the theory is why it is so broad. The theory
expects sharp edges, and since the experimental resolution is much smaller than the
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Figure 9: (A) Energy-
momentum relation. The
two peaks are identified
with spinons (shown in
red and holons shown in
blue. (B)Raw data (black
dots) with fitted spinon
(blue line) and chargon (red
line) Gaussian curves. The
background was accounted
for by they rising dotted line.
The green shaded regions is
unaccounted for spectrum
[6].

effect. Possible explanations include next-nearest-neighbor hopping, interactions with
other orbitals, temperatures or lattice effects [6]

Ultracold Quantum Gases

Ultracold atomic gases provide a new windowing into condensed matter systems by pro-
viding a highly controlled and clean experimental apparatus with which to compare theory
to experiment. This makes them an ideal for studying highly-correlated systems. While
bosonic systems are extensively studied, fermionic systems are significantly more difficult
both in theory and in practice. However, more experiments are being proposed that
would use cold fermionic systems to study highly correlated systems [12], and numerical
studies are ongoing to examine what the results should look like from these systems [9]
However, what is measured in systems of atomic gases is not truly spin-charge separation,
but instead the separation of density waves and hyperfine energy levels. Though we will
still refer to this as spin-charge separation (as is common in the literature) and make the
identification chargon→density wave and spinon→hyperfine splitting between two energy
states.

Recati et al. [12] suggested trapping cold atoms in a harmonic potential, then by
shining a short-laser pulse near the center of the gas, a spin or charge wavepacket could
be excited. With additional laser pulses, the movement of the packets could be measured
and analyzed. Since the two types of packets will move at different velocities, this would
provide direct evidence of spin-charge separation [12].

Numerical studies are also ongoing. The computational work to study fermionic
systems with spin is much greater than typical bosonic systems, however Kollath et
al were able to compute the movement of a spin and charge wave in a system similar to
that proposed by Recati et al [9].

Their work found spin-charge separation by creating a spin and charge wave at the
same point at a time, and measuring how these packets evolved in time. They found that
the created wave splits into four component waves, two spin waves and two charge waves.
Both waves of each time have the save speed, but move in opposite directions, while the
charge and spin waves have distinct speeds [9]

In short, while ultracold atoms have not been extensively studied for spin-charge
separation yet, they will surely be an important experimental environment in the future.
The ability to have complete control over the system and extremely clean samples means
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that experiment and theory could be tested like never before.

Applications to High-Temperature Superconductivity

The cuprate superconductors are a class of superconductors made of a copper mixture
(generally Copper-Oxide layers with nearby layers of other ions such as Barium, Lan-
thanum, or Strontium) which have been observed to superconduct in temperatures as
high as ∼ 100K [10]. However, no mechanism has yet been demonstrated that can
explain why these materials are superconductors over this range of temperatures.

There are a few qualitative reasons to believe that spin-charge separation may play a
role in high-temperature superconductors, especially the cuprates. The first is the quasi-
two dimensional nature of these substances [10]. No example of spin-charge separation has
yet been proposed in dimensions greater than two, though there is increasing evidence that
two-dimensional systems do exhibit this phenomena [8][11]. Furthermore, the electrons
in these systems are believed to be highly-correlated, which is the common feature of all
of the systems in which spin-charge separation has been found.

Besides the wide range over which the cuprates are superconductors, another intrigu-
ing property of these materials is that, in their normal phases (i.e. when they are not
superconductors) over a wide range of temperatures, resistivity and temperature are pro-
portional. This is strange because typically the cuprates are treated as quasi-two dimen-
sional systems, so in the normal phase this suggests that they would follow Fermi-liquid
theory in the normal phase. However, in Fermi-liquid theory, the resistivity of a material
is dominated by electron-phonon interactions, which leads to a quadratic dependence on
temperature, not linear. This suggests that even the normal state is not a canonical
Fermi-liquid.

Spin-charge separation can cause a linear temperature-electrical resistivity relation
and because of this is a reasonable point to consider what effects this phenomena can
have on superconductors. Si [13] found that by assuming spin-charge separation, one finds
that the spin and charge electrical resistivities are different, in fact while the electrical
resistivity is linear, as expected the spin resistivity went as T 4/3. This is in contrast to
the theory where spin and charge cannot separate, in which both of the resistivities must
be the same (and scale quadratically for T << Tc and linearly for T >> Tc)

However, there are limits on how strong this effect can be. Due to an absence of
observed vortex states (known as visions) in the cuprate superconductors, it was shown
that the at least one class of spin-charge separation models cannot be valid for the cuprates
[1].

Until direct experimental evidence, or a complete model for superconducting is found
for the cuprates and other high-temperature superconductors, it is unlikely this debate
will be fully resolved. Unfortunately, as we have seen in the one-dimensional cases above,
observing spin-charge separation directly is often quite difficult and challenging, and there
are no known methods that have observed spin-charge separation in any two-dimensional
system. However some methods have been proposed to test Si‘s work, including mea-
surement of the change in magnetization of one end of a superconducting sample as
spin-polarized current is injected into it [13].

Discussion

While the theory of spin-charge separation is well-developed for one-dimensional systems,
the experimental results have, until recently been lacking. However, recent technologi-
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cal developments have allowed for the direct measurement of distinct holon and spinon
dispersion relations in quantum wires and SrCuO2. Meanwhile measurement of charged,
spinless and uncharged spin-1/2 solitons in polyacelyelene has further shown that these
two types of excitations exist independently of one other.

So while the existance of spin-charge separation is both predicted and observed in
one-dimension, the next experimental breakthroughs are likely to occur in cold atom
experiments where the ability to precision control the parameters of the experiment will
allow for unparalleled measurements of degree of freedom splitting.

From a theoretical perspective, the frontier lies in higher-dimensional systems such as
quantum spin hall states, RVB states in ferromagnets and high-temperature supercon-
ductors. While these two-dimensional models can allow for spin-charge separation, the
theories are far from certain. Once experimentally verifiable predictions become available,
this will provide another frontier to test the theory of spin-charge separation.

Despite the questions this phenomena could answer about highly correlated physics, it
opens a potential Pandora’s Box for new physics. Can other properties that are considered
intrinsic to particles separate in condensed matter systems? What are the implications
of these excitations on what we consider “fundamental”?
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