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Aeolian ripples arise instantaneously from sandy beds subjected to winds
sufficient to cause saltation to surface grains. It is now widely believed that the
process of ripple formation is a self-organizing phenomenon involving non-linear
dynamics in the variation of flux of secondary grains that are ejected through
saltation. In addition, the metric entropy and interaction matrix of the system
alter governs the dynamics and emergent behavior in the patterns. In this paper
I will review the dynamics, self-organization and entropy pertaining to aeolian
ripples. Finally, I will briefly discuss difficulties in studying dune fields.
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1 Introduction

The evolution of complex structures in landscapes from aeolian sand transport
has fascinated and drawn the attention of many scientists. For geographers,
dunes and ripples are of prominent interest since it is a typical landform where
aeolian processes dominate. Such aeolian landforms are estimated to cover about
one-fourth of the earth surface. Furthermore, dune fields and ripples are also
found on Mars and Venus[1]. For physicists the evolution of patterns presents
rich information on non-linear dynamics, entropy and self-organization. While
in engineering, knowledge of these complex patterns is still important today for
exploiting vast areas of land when introducing networks of roads and pipelines.

Wind driven ripples form from the rearrangement of loosely packed sand
grains on sand beds into ridge crest and troughs. The crests lie perpendicular
to wind direction and with asymmetrical cross sections. The upwind slopes
are much less steep than downwind slopes. These ripples are small, with a
wavelength of a few centimeters, and with heights roughly one-fifteenth or one-
twentieth of their wavelength (fig. 1).

Figure 1: sand ripples atop a dune in the Wadi Rum desert in Jordan. The
wavelength is about 10 to 15 cm and the height is a few mm.

The mechanism responsible for the formation of aeolian ripples is thought to
be the indirect action of wind on loose sand. When the wind strength is large
enough, individual sand grains are lifted by the direct action of the shear stress
exerted by the wind on the sand surface. This process is known as saltation in
which grains hop along the surface in low angle trajectories (fig. 2).

During their flight, the grains reach a velocity that is approximately that of
the wind and upon their impact with the surface, they impart their energy and
momentum to the sand, ejecting other grains by a process known as reptation.
These impacts further eject a number of grains on short, quasi-ballistic trajec-
tories that are largely unaffected by wind. For sufficiently large wind velocities,
the bombardment by sand grains accelerated by the wind generates a cascade
process, and an entire population of saltating grains hopping on the sand sur-
face emerges [2]. During strong winds, the layer of saltating grains can reach a
thickness of more than 1 m.
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Figure 2: Interaction of saltating, reptating, and rolling sand grains in the
model. Saltating particles follow by long trajectories (dashed lines), strike the
sand bed.The impacts cause ejection of reptating grains from the bed surface.
These grains trajectories (solid lines with arrows) are short. The landing rep-
tating grains may roll for some distance upon the bed surface (small circles)
before they stop.

In the late 19th and early 20th century, it was thought that ripples formed
on the surface of sand beds similar to water waves, if sand were assumed as a
highly viscous fluid capable of bulk deformation. Another perception assumed
a pre-existing waviness in the airflow over the bed which acted as an external
template for the ripple pattern. This explanation is now dismissed because there
is no evidence of sand motion inside the sand bed itself. Other versions of the
wave hypotheses considered the effect of wave-like perturbations in the dusty
overlying air [3]. Although these possibilities cannot be ruled out, at present
there is not much empirical evidence to support them.

2 Aeolian ripple phenomenology

Wind driven ripples and dunes were extensively studied by R.A. Bagnold in his
classic reference The physics of blown sand and desert dunes. Bagnold explained
that ripples formation involved grain-by-grain motion of the bed rather than a
continuous deformation. Bagnold hypothesized that the ripple wavelength is
equal to the mean length of saltation jump. However, careful experimental
results by numerous researchers challenged this claim since the saltating grains
trajectory is many times longer than the ripple wavelength.

It is now commonly accepted that the mechanism of ripple formation arises
from the nonlinear dynamics in variation of the reputating grain flux. Wind and
saltating grains, whose trajectories are many times longer than the ripple wave-
length, play a complex and indirect role. The oblique, almost unidirectional
bombardment by saltating particles supplies the energy necessary for reptation
while wind strength determines the intensity of saltation. However, the proba-
bility of direct entrainment of particles into reptation by the wind is small.

Using high-speed photography of saltation occurring on sand filled strip in
a wind tunnel, Willett (1986) observed that sand collision typically resulted in
one ricocheted grain and a large number of low energy grains (fig. 3). The
ricocheted grains impart most of the impact energy, with about two thirds of
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the impact velocity, and are ejected at an angle larger than the impact angle.
The other low energy grains had a mean speed of only 3% of the impact speed.
The largest number of grains ejected occurred when the impact angle was near
12◦[3].

Numerical simulation of single impacts shed further light on the grain impact
process. The kinetic energy of each impact redistributes as 1) rebound of the
original grain from the bed 2) ejection of secondary grains from the bed 3)
dissipation by inelastic deformation of the bed. The initial grain population
is entirely aerodynamic with a delta function distribution of velocities. After
tens of hop times, the full range of ejection velocities is populated. At this
point, the total number of saltating grains begins to grow rapidly resulting in a
chain reaction. Wind causes grains to land with more energy than they initially
left the bed and will consequently retain a larger fraction of their energy upon
impact.

After many generations, a stable population is achieved. The steady state is
characterized by a specific total mass flux, an equal number of impacting and
ejected grains, and a stationary wind velocity profile. The steady state saltation
population contains no aerodynamically entrained grains. As the population of
the splashed and rebound grains increases, the shear stress at the bed is reduced
and correspondingly reduces the rate of aerodynamic entrainment (fig. 4).

Figure 4: Simulation of a saltation system a) number of grains (dashed) and
ejected (solid). b) total mass flux (solid) and shear stress at the bed (dashed).

3 Mathematical model

Models of ripple dynamics started in 1940s with Bagnold. The original idea of
Bagnold was based on the existence of a large number of grains that jump from
one ripple crest to another, in what is called the ballistic hypothesis. The ballistic
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hypothesis was later abandoned because experimental observations showed that
grains jump over distances that are much larger than the ripple wavelength [4].
Moreover, this model cannot predict the merging of ripples and the resulting
coarsening of ripple patterns that is observed in natural settings [5].

Starting from 1980s, a renewed interest in aeolian phenomena caused a surge
of many analytical models and has led to a series of papers based on different
types of phenomenological and mathematical assumptions [6-12]. Some of these
works are based on discrete modeling approaches, such as cellular automata, and
include empirical rules of sand grain behavior [6,8, 9]. One particular advance
in the theoretical understanding of ripple formation was achieved by Anderson
[13,14].

In Andersons model the only role of saltating grains is to bring energy into
the system, having extracted it from the wind. The saltating grains energize
the reptating population, and ripple formation is entirely due to the spatial
variability of the flux of reptating grains. Andersons original model deals with
a two-dimensional layer of sand, i.e. one-dimensional ripples, and formulates
the problem in terms of an integro-differential equation describing the one-
dimensional sand surface. The dynamics of the reptating grains is handled
by a probabilistic approach in which the grains take steps of random length,
which avoids tracking the detailed dynamics of the impact and reptation flight.
In the model, ripples arise as a linear instability of a uniform layer of sand.
Unfortunately, the model yields unrealistic results at the nonlinear stage of
ripple growth, which begins very early.

A simpler model proposed by Prigozhin (1999) provides a better description
of the physical process than the simplified stochastic model. The model produces
the expected asymmetrical ripples and is able to simulate the merging of ripples.
To allow for metastability, the model needs to include the surface density of the
rolling particles in addition to the surface flux by the local surface slope.

Figure 5: The saltating grain collides with the bed at an angle γ to the hor-
izontal, while the surface is inclined at an angle α. The angle of incidence
θ = α+ γ.

Based on the phenomenology of saltating grains discussed above, there exists
a uniform flux of saltating grains that reach the bed surface z = h(x, t) at a low
angle γ to horizontal. The impacts cause erosion of this surface. The erosion
rate f is proportional to the impact intensity, which depends on the surface
orientation with respect to the direction of saltation. If the saltating particles
strike an inclined surface at an angle θ (fig. 5), then f is proportional to sin θ
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and can be written as

f = f0
sinθ

sinγ
(1)

where f0 is the rate of erosion of a horizontal surface determined by the intensity
of saltation.

A reptating grain, ejected by an impact at a point x and lands on the bed
surface at a point y with probability density p given by the splash function given
by p = pα(x,y). The splash function is not currently known either experimen-
tally or theoretically although previous studies [6,13] suggest that the system
is not very sensitive to splash function behavior and that an approximation is
sufficient for simulation. Upon landing, reptating particles do not stop imme-
diately but may roll away. Let R(x, t) be the effective surface density of rolling
particles. When they become stationary, the rolling particles become incorpo-
rated into the motionless bed. If the rate of rolling-to-steady-state transition is
given by Γ[h,R], then the continuity equation for the sand bed can be written
as:

∂h

∂t
= Γ[h,R]− f (2)

∂R

∂t
+∇ · J = Q− Γ[h,R] (3)

Where J is the horizontal projection of the flux of the rolling particles and
the and the source term gives the intensity of the reptating particles.

Q(x, t) =

∫
f(x, t)pα(y,x)dy (4)

Assuming that reptating particles lose most of their momentum in collision
with the rough bed surface, they impart all their energy to the incline. The
particles then roll in the direction of steepest descent and thus the simplest
form for the flux J is given by

J = −µ0R∇h (5)

With µ0 is a constant of motion for the particles. Finally, the rate of rolling-
to-steady-state transition Γ can be approximated as proportional to the rolling
particles R. Since the exchange rate cannot depend on the free-surface slope
orientation, Γ can be assumed as a function of |∇h|2. The steeper the free
surface is, the easier particles roll down and, correspondingly, the lower is the
rate of rolling-to-steady-state transition. Combining all these assumptions leads
to an expression for Γ.

Γ = κ0R

(
1− |∇h|

2

tan2α

)
(6)

where κ0 characterizes the particle stability upon a horizontal surface.
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The model can be further simplified by rescaling the variables by the con-
stants used above, f0, κ0 and L the mean length of reptation by letting h →
h/L,f → f/f0 and R→ κ0

f0
R. The new flux and rolling rate become:

J = −νR∇h,Γ = R

(
1− |∇h|

2

tan2α

)
(7)

where ν = µ0/κ0L is a dimensionless parameter characterizing the compe-
tition between mobility and stability of the rolling grains on the surface. In
addition, the continuity equation becomes

f0
κ0L

∂R

∂t
+∇ · J = Q− Γ[h,R] (8)

The time derivative of R can be neglected since f0/κ0L� 1 and we achieve the
simplified flux equation

∇ · J = Q− Γ[h,R] (9)

By linearizing the above equations and considering up to second order terms, a
dispersion relation is obtained for the real part of the ripple wavelength Re(λ).
The system becomes unstable when Re(λ) > 0 . The condition relating the
incident angle to the horizontal γ to ν is given by

cotγ > ν + km, km = 2.01 (10)

This result agrees with the experimental and theoretical prediction where low
angle projectiles provide the largest non-uniformity in the ripples (cot γ is large).

Finally, by combining (2), (4), (7) and (9), the nonlinear system can be solved
numerically assuming periodic boundary conditions and using an implicit finite
difference approximations. Initially, the ripples obey the linearized equations
but after an initial stage the fastest growing mode dominates.

The simulations show the mechanism of ripple merging in fig. 6.The merger
takes place only if the overtaking ripple is much smaller than the bigger over-
taken ripple, which move more slowly. As the smaller ripple reaches the larger,
the trough between them merge and a two-headed long ripple appears. Then
the larger ripple crest starts to move forward as a separate small ripple and two
new ripples emerge from this recombination. The emergent ripple is larger than
the larger of the two ripples before the merger. These mergers are not simple
superposition of waves but a complicated soliton like mode of ripple interaction.
So how do these non-linearities translate to self-organization? It is still not clear
how to proceed past the non-linear dynamics but the discussion below gives an
overview of self-organizing systems.

4 Self-organization, entropy and the Lyapunov
exponent

Landscapes are self-organizing due to the fact that individual landforms arise
independent of external factors. Phillips (1999) reviewed literature in geomor-
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Figure 6: Interaction of simulated ripples with time showing mergers between
ripples.

phology and categorized eleven different forms of self-organization [15]. Aeolian
ripples and pedogenesis (soil formation) are a form of self-organization where
pattern formation arises from chaotic dynamics. Self-organizing geomorphic
systems are attracted to stationary end states and are not free to evolve from
common starting points into diverse, qualitatively different forms. Thus, geo-
morphic systems evolve into similar forms over the world.

On the contrary, an opposite effect is seen in self-organizing, far from equi-
librium biological systems that are able to evolve into wholly new forms and
different states. At broad scales, geomorphic systems indeed develop similar
forms. However, at more local scales, landscapes are sensitive to initial con-
ditions and perturbations, whereby common starting points can lead to quite
diverse states independent of stochastic forcing and environmental controls.

Self-organizing behavior in geomorphology is governed by the arrow of his-
tory and the arrow of time. The arrow of time applies to irreversible processes
which lead towards maximum disorder as observed in chemical weathering that
irreversibly transforms rock to saprolite and soil. The arrow of history, con-
versely, leads towards states of higher order and organization. An example is
seen in wind which converts undifferentiated sediment into an increasingly or-
ganized soil profile. These examples show that many geomorphic phenomena
involve both processes where disorder increased during geochemical weathering
followed by self-organization during pedogenesis.

In thermodynamic perspectives, the dynamics of a far- from-equilibrium self-
organizing system is governed by an increase in the total entropy of the system
and its environment and a decrease in the entropy within the system. However,
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the system has to order somehow without violating the second law of thermo-
dynamics. If dS is the change in entropy of the system and its surrounding, deS
is the change due to exchanges between the system and its environment and
diS is the change associated with entropy production by irreversible processes
within the system, then the following statement is always true

dS = deS + diS, diS > 0 (11)

However, a different type of entropy is known as the metric or K-entropy.
Kn = −

∑
i0...in

Pi0...in lnPi0...in
In self-organizing systems, entropy would have to decrease to reflect an in-

crease in order and organization. However, since geomorphic systems also in-
clude irreversible processes, total entropy must increase with time (second law
of thermodynamics). This can only be accomplished within a hierarchy. Let-
ting i denote levels of hierarchy, the following criteria can be put forward for a
self-organizing system:

1) Total entropy aggregated over all levels must increase over time.
2) Entropy at all levels i must increase over time.
3) Information (negative entropy) must increase over time.
4) Increase in information (decrease in entropy) at any level i must be offset

by increases in entropy at other levels.
K measures the degree of uncertainty and it converse, the degree of order.

In random white noise systems, all outcomes are equally likely and entropy
is infinite. On the other end of spectrum, a completely deterministic, non-
chaotic system where only one outcome is possible, entropy is zero. Thus,
finite, positive entropy is associated with a combination of order and random
noise and /or deterministic chaos. The metric entropy is related to the dynamics
of the system and particularly the Lyapunov exponent λ. λ measures the rate
of exponential divergence from the initial condition. A system with negative λ
is dissipative and results in an attractive phase space. The metric entropy is
related to the Lyapunov characteristic exponents by

Kn =

∫ ∑
λi>0

λidµ (12)

If positive entropy is to increase over time in the absence of stochastic forcing,
a geomorphic system must have at least one positive Lyapunov exponent since
the metric entropy is equal to the sum of all the positive Lyapunov exponents.
The Lyapunov exponents are the real parts of the complex eigenvalues of the
interaction matrix of the system. Thus the interaction matrix is indicative of
whether the system is capable of generating positive entropy over time in the
absence of stochastic forcing.

While the positive Lyapunov exponent expresses the metric entropy, a nega-
tive exponent reflects the exponential approach of an initial state to an attractor.
Thus a positive λ gives the rate of information loss while a negative λ gives the
rate of information gain. If a system is to be self-organizing, there must be at
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least one positive Lyapunov exponent, but Σλ < 0 . In this way, the rate of
information gain can exceed the rate of entropy production.

If the system can be represented by an nxn interaction matrix A which
represents the interaction aij of each component xi on the other xj .Then the
two criteria for self-organization are as follows:

1) The matrix A is unstable according to the Routh-Hurwitz criteria.
2) The sum of the diagonal elements of A is negative (Σaii < 0).
It still remains unclear whether the interaction matrix of non-linear systems

such as aeolian ripples and dunes can be measures. If feasible, it will offer new
insight on the system and its phase space. Phillips (1995) measured the flow
hydraulics at a channel cross section and determined the interaction matrix thus
proving that the system is self-organizational. In this case, the interaction ma-
trix was readily measured since scaling laws have been derived for channel/pipe
systems.

5 Ripples but not dunes

Although wind driven dunes fall under the same self-organizing behavior as
aeolian ripples, it has been much harder to quantify how Aeolian sand transport
evolves to dunes. Because of the complicated nature of air flow and of sand
erosion, transport, and deposition over a dune, a simple model from the physics
of aeolian sand transport to the evolution of a dune field is not currently feasible.

A typical dune field extends for hundreds of kilometers, and takes many
thousands of years to form, so that the study of dune-scale geomorphology
cannot rely on well-defined experiments. Difficulties arise due to strong non-
linearities in the system, which includes wind flow over a dune field expressed
by the Navier-Stokes equation, sand transport induced by wind and sudden de-
formation by gravity known as avalanching, the latter leading to non-smooth
dynamics. Avalanching has been intensively studied in relation to self-organized
criticality. Yet, some characteristic features of dunes, such as a strong asym-
metric profile, need theory which goes beyond linear analysis.

To describe the evolution of such a system starting, the momentum of the
system comprised of air and sand grains has to be properly described. However
no such equation is yet available. Even if wind flow and sand transport can
be considered separately, it is extremely difficult to solve the Navier-Stokes
equation, even for an isolated single dune on a flat surface. In the case of a
dune field comprising many dunes with different shapes, it is almost impossible
to calculate the wind flow with the same accuracy as in the case of a single
dune. Furthermore, these equations have to be solved under constantly changing
boundary conditions as the dunes grow, in a three-dimensional space (x,y,z).
Tracking dune evolution by calculating wind flow over a dune field each time is
therefore practically impossible.
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6 Conclusions

Self-organizing phenomena are common in earth surface systems, and self or-
ganizing principles have been proposed as general principles applicable to ge-
omorphic systems. Ripples spontaneously emerge from an essentially flat bed,
beginning as indefinite bumps on the bed. through a process driven by a disper-
sion in ripple translation velocity, these small ripples merge, rapidly at first and
more slowly later, to arrive at a pattern that translates downwind with little
further modification.

Despite the plethora of research on aeolian ripple models and computer sim-
ulations using numerous techniques, much less work has been conducted on
studying the phase space of the system and its attractors. One reference dis-
cussed the phase space of dune fields but only due to scarcity of the analytical
models available. Eventually, the merger of the non-linear dynamics and fu-
ture work on attractors in aeolian ripples will significantly improve our current
understanding of self-organization and pattern formation in geomorphology.
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