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Abstract

Optical lattices are periodic potentials giving rise from optical fields. In this review
essay, system of cold bosonic atoms sitting in an optical lattice is considered. Different
quantum phases in optical lattices are discussed. In particular, we will talk about the
superfluid and the Mott insulating phases of the system. Finally, a brief introduction on
the topological states found in the optical lattices is given.

1. Introduction to Optical Lattices

In the construction of an optical lattice, neutral bosonic atoms are placed in an ex-
ternal electric field E⃗ provided by optical beams with frequency ω. Though the atoms
are charge neutral, they interact with the electric field E⃗. As the optical field is turned
on, the neutral atoms are polarized under the field. The induced dipoles on the atoms in
turn provide a bridge for the atoms to interact with the electric field E⃗. The energy V
associated with a dipole interaction is given by

V = −d⃗ · E⃗ = α(ω)E2 (1)

where d⃗ is the induced dipole on the atom and the equal sign hold since d = α(ω)E⃗
where α(ω) is the polarizability of the atom. In the large detuning limit, there is no
absorption and emission, so α(ω) can be considered as real. Since the electric field field

E⃗ is a function of position r⃗, the energy V lead to a potential for the neutral atoms.
Such phenomenon is in general known as the stark effect [1]. Note that the intensity I
is proportional to E2, so the strength of the potential can be changed by altering the
intensity of the light beams.

A periodic potential V can be generated by a standing wave of electric field , prac-
tically constructed by two counter propagating beams of the same amplitude and wave
number k. Two counter propagating beams in one direction creates single standing wave
(see Fig.1a), giving rise to wells in the form of array of planes. Standing waves in two
perpendicular directions (see Fig.1b) result in wells like array of lines. Note that the inter-
ference between the beams can be eliminated by suitably choosing the orthogonal plane
polarizations. Similarly, three orthogonal standing waves (see Fig.1c) generate trapping
wells in the form of simple cubic lattice of points [1]. In such case, the electric potential
Vext for a single particle takes the simple form as

Vext(r⃗) = Vo
∑
i

sin2 kxi (2)

where Vo is the depth of the potential. By controlling the beam intensity I, the well
depth Vo can be tuned experimentally. Note that the lattice constant a of such simple
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Figure 1: A neutral atom is sitting in an optical field. (a) Standing wave in one direction
gives rise to potential like array of planes. (b) Standing waves in two perpendicular
directions result in potential like array of lines. (c) Standing waves in three orthogonal
directions generate potential like simple cubic lattice.

cubic lattice is given by a = π/k, so the lattice spacing can be changed by controlling the
wavelength of the beams. Indeed, one can also achieve different lattice configurations by
changing the angles between the standing waves.

Practically, the laser beams used in the experiments are not perfect perfect plane
waves. Instead, they are gaussian beams. The effect of gaussian envelope consequently
leads to an additional slowly varying trapping potential. Since such effect is not related
to the main idea of the topic, we will omit the effect in the discussion.

Since all the parameters in the lattice structure can be tuned experimentally by con-
trolling the optical beams, optical lattice provide us with a controlled way to construct
lattice structures typically found in condensed matter system. Furthermore, our lattice
structure is longer restricted to the materials found in the laboratories. By controlling
the parameters and the structure of the optical lattice, different emergent state of matter
can be manifested. In the following, we will talk about how we can construct differ-
ent quantum phases in the optical lattices. Also, we will discuss the topological states
recently found in the optical lattices.

2. Quantum Phases

Quantum phase is the state of matter at absolute zero temperature in which the
thermal energy is vanishing. Without thermal energy, there is no longer thermal fluctua-
tion, explicitly, all the Boltzmann factors in the density matrix die out except the factor
for the ground state. Hence, state of matter at absolute zero temperature refers to the
ground state of the system. Recall that classical phase transition is the change between
a disordered phase and an ordered phase due to the change of temperature. In contrast,
quantum phase transition is the change of phase at the fixed absolute zero temperature.
The variable that drives the transition is the parameter in the hamiltonian, for example,
the external magnetic field or applied pressure on the a system.

In the following, we will discuss the quantum phases in a system of cold atoms staying
in an optical lattice. To be more specific, we will talk about the superfluid phase and the
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Mott insulating phase in the system. The first step of the discussion is to introduce the
Bose-Hubbard model, which quantum mechanically describes a system of cold atoms in
an optical lattice.

2.1 Bose-Hubbard Model

In Section 1. we have discussed the potential experienced Vext by a neutral atom in
the optical lattice. Suppose we put N atoms into the optical lattice, in addition to the
periodic potential, the atoms will experience scattering due to collision with neighboring
particles. Though neutral atoms can interact through the van der Waals interaction,
the dominating scattering process is the s wave scattering between atoms since s wave
scattering corresponds to a much longer scattering length as. In such case, van der Waals
interaction plays only a minor role in the two body interaction. Hence the interaction
Vint between an atom at x⃗1 and an atom at x⃗2 can be effectively written as

Vint(x⃗1 − x⃗2) = gδ3(x⃗1 − x⃗2) (3)

where the coupling strength g = 4π~2a2s/m and m is the mass of the atoms [2]. With the
external electric potential Vext and the s wave scattering potential Vint, one can describe
the system quantum mechanically. Such desciption of the system is known as the Bose-
Hubbard model. In the language of second quantization, the many body hamiltonian of
atoms in an optical lattice is given by the typical form

Ĥ =

∫
ψ̂†(x⃗)

(
− ~2

2m
∇2 + Vext(x⃗)

)
ψ̂(x⃗)d3x

+
1

2

∫ ∫
ψ̂†(x⃗1)ψ̂

†(x⃗2)Vint(x⃗1 − x⃗2)ψ̂(x⃗2)ψ̂(x⃗1)d
3x1d

3x2 (4)

where ψ̂(x⃗) and ψ̂†(x⃗) are the field operator. ψ̂(x⃗) annihilates an atom at x⃗ whereas ψ̂†(x⃗)
creates an atom at x⃗. Since the atoms we are considering are bosons, the field operators
obey the (equal time) commutation relation [ψ̂(x⃗1), ψ̂

†(x⃗2)] = δ3(x⃗1 − x⃗2). Assume that
the atoms are cold enough such that higher bands are irrelevant to the physics involved,
then we can simply consider the lowest band in the system [2].

To make the physical picture more transparent, we introduce the set of Wannier
functions {w(x⃗− x⃗i)} as the orthonormal basis for the lowest band [2, 3]. Note that the
Wannier function w(x⃗− x⃗i) is a superposition of Bloch waves and is localized at the well
labeled by i. Since the Wannier functions is complete, we have the fourier expansion for
the field operator

ψ̂(x⃗) =
∑
i

âiw(x⃗− x⃗i) (5)

where âi annihilates a particle in the mode i with mode function w(x⃗ − x⃗i), and the
hermitian conjugate â†i does the reverse process. They obey the commutation relation

[âi, â
†
j] = δij. By substituting the expression for ψ̂(x) into Eq.(4), the Bose-Hubbard

hamiltonian becomes

Ĥ = −J
∑
<ij>

a†iaj +
1

2
U
∑
i

n̂i(n̂i − 1) (6)
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Figure 2: Poissonian distributions for the number of particle in a site is shown in the
superfluid ground state [5]. (a) Probability distribution for ⟨n⟩ = 1 and ⟨n⟩ = 2 for a
certain cite. (c) Heuristic picture of the superfluid ground state in the optical lattice for
⟨n⟩ = 1.

where ni = a†iai, tunneling matric element J = −
∫
w(x⃗ − x⃗i)(− ~2

2m
∇2 + Vext(x⃗))w(x⃗ −

x⃗j)d
3x and the interaction energy U = g

∫
|w(x⃗)|4d3x [2, 3, 4]. As seen in the expression,

the Hamiltonian consists of two crucial terms. The first term in the hamiltonian is
known as the hopping term which describes the tunneling of atoms between neighboring
sites. The strength is characterized by the tunneling matric element J which is generally
positive. A single particle state with non-zero components on neighboring sites gives a
more negative hopping energy. Hence, the hopping term tends to delocalized the single
particle wave function in the optical lattice [5]. The second term in the hamiltonian is
known as the interaction term which describes the on-site interactions of atoms. Since
U specifies the interaction energy between two atoms staying in the same site. The
component Un̂i(n̂i − 1)/2 counts the total interaction energy in the i − th site and the
sum counts all the on-site interaction energys in the lattice. A many particles state with
atoms well separated in different sites gives the minimal interaction energy which is zero.
Hence the second term in the hamiltonian tends to localize atoms in different sites [5].

Note that once the periodic potential is fixed, the value of J and U is determined. If
we increase the potential depth Vo by tune up the intensity of the optical beams in the
experiment, it is less likely for atoms to tunnel through the barrier. Hence, it is expected
that the tunneling matrix element J decreases as the potential depth Vo increases. On the
other hand, the atoms are tightly squeezed together. Thus, it is expected that interaction
energy U between two atom in a well increases as the well depth Vo increases. Notice that
the only parameter which determines the ground state of the Bose-Hubbard hamiltonian
is the dimensionless ratio U/J . We will see that the ground states of the system have
completely different properties in the two extreme regime (i) U/J ≪ 1 and (ii) U/J ≫ 1.

2.2 The Superfluid Phase

Consider the case in which the tunneling matrix element J is much larger than the
interaction energy U , i.e. U/J ≪ 1. To get a sense of the ground state in such case,
it is better to start with the case where U = 0. The problem then reduces to a system
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Figure 3: Poissonian distributions for the number of particle in a site is shown in the Mott
insulating state [5]. (a) Probability distribution for ⟨n⟩ = 1 and ⟨n⟩ = 2 for a certain
site. (c) Picture of the Mott insulating ground state in the optical lattice for ⟨n⟩ = 1.

of N non-interacting bosons in a periodic potential. At zero temperature, Bose-Einstein
condensation happens, consequently, each atom is condensed to the ground state of the
corresponding single particle hamiltonian. Thus, the total ground state is given by the
product state of N particles each of them are staying in the Bloch state of zero crystal
momentum in the lowest band. Hence each atoms are completely delocalized in the
optical lattice, meaning that the wave function of single particle spread over the whole
lattice. It is realized as a superfluid (SF) phase. In terms of the field operators ai’s
introduced previously, the ground state is

|ΨSF ⟩ = N
(∑

i

a†i

)N

|0⟩ ≈ N ′
∏
i

|αi⟩ (7)

where N , N ′ are some normalization constant and |0⟩ is the vacuum state [3, 5]. The
state |αi⟩, where αi ∈ C, on the right hand side stand for a coherent state. Effectively,
there is a coherent state associated with each lattice site. Consequently, the probability
distribution of n̂i is a Poissonian with variance V ar(n̂i) = ⟨ni⟩ which is non zero in each
site. Fig.2a shows the probability distributions for ⟨ni⟩ = 1 and ⟨ni⟩ = 2 respectively.
Fig.2b heuristically illustrate the delocalized atoms in the superfluid phase.

For the case of U/J ≪ 1 with non zero U , the problem can be solved by introducing
the Bogoliubov transformation and the ground state will then be the state with no quasi
particle. However, such ground state breaks the U(1) gauge symmetry of the hamilto-
nian. Hence, it is expected that there is one massless goldstone boson associated with
such broken symmetry and we can have gapless excitations. Besides, macroscopic wave
function ψ(x⃗) = ⟨ψ̂(x⃗)⟩ can be defined in such weakly interacting regime [6]. The problem
will then become solving the Gross-Pitaevskii equation for the mean field ψ(x⃗).

2.3 The Mott Insulating Phase

Now, we consider the limit in which the interaction energy is much larger than the
tunneling matrix element J , i.e. U/J ≫ 1. Similarly, it would be easier to start with the
case where we have infinite well depth Vo in which J = 0, meaning that the atoms can
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never tunnel through the barrier. The only term left in the hamiltonian is the interaction
term and it is already diagonalized. To minimize the on-site interaction, we should never
put two particles on the same site unless it is really inevitable. More generally, we should
put equal number of particles in each site so as to minimize the total energy. Such ground
state is realized as the Mott insulating phase. The ground state of the system is then
given by

|ΨSF ⟩ = N
∏
i

(
a†i

)n

|0⟩ (8)

where N is some normalization constant and n is the mean number of particle per site
[3, 5]. Note that such ground state is a product state of Fock states of the sites, so
each site has well defined number of particle with no fluctuation. Fluctuation in number
of particle in a site becomes s very energetically costly in this case. Fig.3a shows the
probability distribution for ⟨ni⟩ = 1 and ⟨ni⟩ = 2 respectively. Also Fig.3b pictorially
shows the localized atoms in the Mott insulating phase.

Since the ground state has well defined number of particles in each site, the expectation
value ⟨âi⟩ = 0 and hence ⟨ψ̂(x⃗)⟩ = 0. Hence we cannot establish a coherent macroscopic
wave function in the Mott insulating phase. In other words, fixing the number of particles
in the sites lose the coherence. So the many body problem cannot be solved by the theory
of weakly interacting bosons established by Bogoliubo, Gross and Pitaevskii [5].

Unlike the case in superfluid regime where there is gapless excitation, the lowest lying
excitation in the Mott insulating regime is gapped. In the limit of U/J ≫ 1, the energy
gap ∆ = U [5]. Such phenomenon can be understood by considering a Mott insulating
ground state in which each site is filled with one atom. The lowest lying excitation
corresponds to removing an atom from a site, and then place it in another site. The
energy cost in taking away an atom is zero, but the amount of energy that we need to
impart into the system so as to place the taken atom into another site, which is already
occupied by another atom, is U . That explains why the energy gap for the lowest lying
excitation equals U . Such process is highly analogous to particle-hole pair creation.

2.4 Quantum Phase Transition

We have just seen that the state of matter at zero temperature in the two extreme
regime (i) U/J ≪ 1 and (ii) U/J ≫ 1. The former case gives a superfluid phase whereas
the later case gives a Mott insulating phase. In between the two regime, there is a critical
point at which quantum phase transition occurs. If the mean number ⟨n⟩ of particles in
each site is much larger than unity, meaning that many atoms are embedded into the
optical lattice, then the quantum critical point is given by (U/J)c = 4z⟨n⟩ where z = 2d
is the number of neighboring sites for each site [5]. As we tune up the intensity of the
light beams, the parameter (U/J) increases accordingly. At the quantum critical point
(U/J)c, quantum phase transition occurs. The atoms in the optical lattice will transit
from the superfluid phase to the Mott insulating phase.

Experimentally, there are many ways in visualizing the quantum phase transition. All
of them make use of the dramatic difference in properties in the two phases. Here we
will discuss the experiment in observing the multiple matter wave interference pattern
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Figure 4: Multiple matter wave interference pattern observed at t = 15ms [5]. Sharp
interference is observed for Vo < 10Er. The pattern becomes blurred if Vo is further
increased. At about Vo = 20Er, the interference pattern vanishes.

[3, 5]. About 105 number of 87Rb atoms are immersed into the optical field with trapping
frequency 240 Hz. The well depth Vo is measured in unit of recoil energy Er = ~2k2/2m.
By controlling the well depth Vo, the bose gas is initially prepared in different phases.
The optical potential is turned off suddenly, and the gas of atom is then allowed to evolve
freely. As seen in Fig.4, sharp interference pattern is observed when Vo < 10Er, which
corresponds to the superfluid coherent phase. An incoherent background emerges when Vo
is increased further. Finally, no interference pattern can be observed and it corresponds
to the complete Mott insulating phase.

There are various methods in visualizing the quantum phase transition in optical
lattices. For example, an experiment can be done in probing the critical velocity of the
bose gas. Finite critical velocity will be found in the superfluid phase but no in the
Mott insulating phase. An experiment can also be performed in probing the excitation
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spectrum of the gas of atoms. Finite energy gap will be found in the Mott insulating
phase but not in the superfluid phase.

3. Topological States

In this section, we will talk about the topological states recently found in the optical
lattices [7]. Topological states in a quantum system refer to states in the energy spectrum
which can not be eliminated by adding local perturbations that preserves the symmetry of
the system. For example, the chiral edge states in two dimensional topological insulators
with particle-hole symmetry is a topological state. Their spatial wave function is localized
at the boundary and hence they are called edged states. They are chiral in the sense that
they propagate only in one direction along the boundary of the quantum hall material.
They cannot be continuously deformed away from the spectrum by locally perturbing the
system at the same time obeying the particle-hole symmetry.

In the following, we will discuss the chiral edge states in an optical lattice. Again, it
is the easy-tunable structures of optical lattices enable the observation of these emergent
states in the laboratory. Before discussing the topological states, we will introduce the
Haldane Model which describes a topological insulating system in an optical lattice.

3.1 Haldane Model

It is worth noting that topological states exist even when is no interaction. So, for
simplicity, we do not include the small interaction between atoms here. We will work
with a two dimensional system in x-y plane. Here, in additional to the periodic optical
lattice potential Vext, we consider a light-induced periodic vector potential A⃗, with zero
total flux, upon the system [8]. The aim of the introduction of such vector potential will
clear later. Furthermore, we add an extra confining electric potential Vc which serve to
creat a boundary in the system. Explicitly, Vc = 0 for r = 0 and Vc = ∞ for r > Ro [7].

Since the atoms in the lattice are non-interacting, they cannot see each other in the
lattice. To solve for the band structure, it is suffice to work with the single particle
hamiltonian. With the potentials Vext, A⃗ and Vc, the single particle hamiltonian Ĥ is

Ĥ =
1

2m

(
p⃗− αA⃗(x⃗)

)2

+ Vext(x⃗) + Vc(x⃗) (9)

where α is the induced coupling strength with the gauge field A⃗ [7, 9]. With the single
particle hamiltonian Ĥ, the lowest band of the system can be obtained by using s wave
tight binding approximation.

3.2 The chiral edge states

The lowest band structure associated with the single particle hamiltonian in Eq.(9)
has been solved numerically [7, 9]. The density of states and the spectrum are shown
in Fig.5. Fig.5a shows the density of states of the band with α = 0. It can be seen
that there is no gap in the band constructed by the s wave tight binding approximation
without the light-induced vector potential A⃗. Fig.5b shows the density of states of the
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Figure 5: Density of states and the spectrum for the Haldance model [7]. Fig.5a shows
the density of states of the gapless band with α = 0. Fig.5b shows the density of states
of the gapped band with α = 2. Fig.5c shows the energy spectrum against the orbital
angular momentum with α = 2. A indicates the ground state and B indicates the chiral
states

band with α = 2. It can be observed from the figure that a energy gap is opened when
light-induced vector potential A⃗ comes in. Only little amount of state is available in the
gap.

Fig.5c shows the energy spectrum against the orbital angular momentum with α =
2. It can be seen that there are states in between the energy gap. Note that these
states are not symmetric about the vertical line with vanishing angular momentum. Such
phenomenon is expected since the light-induced gauge field A⃗ breaks the time reversal
symmetry of the system. Energy eigenstates may not comes in pairs with opposite angular
momentum. These gapless states in the gapped are hence called chiral states. In the
figure, A indicates the ground state of the system while B indicates the chiral states
within the gap. Since the band structure resembles the form the topological insulator
in which there is gapless edge states upon a gapped bulk band, such emergent phase in
optical lattices is called the topological insulating phase.

With the single particle hamiltonian in Eq.(9), one can also solve for the energy
eigenstates for the spectrum using the tight binding approximation. Let ψn(x⃗) be the
eigenstate with energy εn. |ψn(x⃗)|2 gives the (probability) density distribution of the
particle. Fig.6 shows the density distribution for the ground state A and the chiral state
B respectively. Higher density is indicated by a brighter color. It can be seen that the
ground state wave function is spread on the sites over the lattice. For the chiral states,
the wave function is localized at the boundary of the lattice. Hence these states are the
topological chiral edge state. It has been proposed that if atoms are loaded to the edge
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Figure 6: Density distribution |ψn(x⃗)|2 for the ground state A and the chiral state B
respectively [7]. Higher density is indicated by a brighter color.

states, one can observe mass current along the boundary by imaging the atoms [7]. Since
these states are chiral, the atoms in the edge states will only travel in one direction along
the boundary.

It has been found that the boundary provided by the hard wall confining potential Vc
plays an important role in the formation of the chiral edge states [7]. If one softens the
boundary, then one cannot arrive at any edge states. The chiral edge states are found
only if the thickness of the boundary is of length scale of several lattice constant a. If we
soften the wall to a thickness of more than several lattice constant a, the edge states will
mix with the Tamm states and eventually destroy the topological insulating phase in the
optical lattice [7].

4. Conclusion

We have discussed the construction of optical lattice. We talked about the interacting
bose gas of atoms in the optical lattice by introducing the Bose-Hubbard model. It is
found that the system shows two quantum phases with completely different physical
properties. They are the superfluid phase and the Mott insulating phase. We have also
talked about experiments in visualizing the quantum phase transition at the critical point.
Lastly, we discussed the topological chiral edge states theoretically found in the Haldane
model. It is expected that there will be upcoming experiments verifying the existence of
these topological edge states in optical lattices.
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