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Abstract

Here, we discuss the spatial self organization of a BEC in a single mode optical cavity
driven transversely by a laser field. Above a critical pump power, the atoms organize
themselves into one of two possible arrangements depending on the initial fluctuations
of the system. The system is analyzed at a mean field level. Connections of this system
to the Dicke quantum phase transition is drawn. It is realized by two photon processes
involving the cavity field and the pump mode. Finally some experimental results are
also reported.
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1 Introduction
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Figure 1: Figure from [1], SPCM-single pho-
ton counting module, a) Pump less that crit-
ical power, homogenous state, no coherent
scattering of light into the detector. b) and
c). Self organization into odd and even sites
formed by the cavity mode and the pump
laser.The pump laser is along the z) axis and
the cavity axis is along x direction. Now here is
superradiant scattering into the counting mod-
ule

Recent developments in ultracold atomic
gases have helped simulate a range of con-
densed matter phenomenon,for example the
transition between superfluid and Mott in-
sulator states in a Bose Gas. However, the
systems realized so far involve the creation of
a static optical lattice which is formed by a
system of counterpropagating laser beams.
The electric field induces atomic dipoles
which get trapped in the valleys of the op-
tical potential. However, the imposition of
an external lattice prevents us from studying
phenomenon which arise from the emergence
of a lattice spontaneously because of the in-
teractions. Thus, interesting phenomenon
like dynamics of glassy media, crystalliza-
tion, defects have remained inaccessible to
cold atom experiments.

That is why it is an interesting problem
to see how an emergent lattice can be ob-
tained in experiments as a result of interac-
tions between the gauge field(photons) and
the matter field (which can involve either a
gas of coherently driven dipolar atoms or a
Bose Einstein gas trapped in a cavity oscil-
lator). The study of these systems is inter-
esting in their own right because they draw
elements from cavity QED where we see how
the motional degrees of freedom of a me-
chanical system are affected because of radi-
ation pressure force due to the exchange of
momentum between light and matter as well
as from the field of ultracold atomic gases.

1.1 Description of the basic
setup

A diagram of the basic setup is shown in
Figure 1. The setup consists of a Bose Ein-
stein condensate interacting with a single mode of a high Q optical cavity. The condensate
atoms are driven transversely from the side by a pump laser mode with frequency ω. The
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laser is far detuned from the atomic transition ωA. Thus we assume that ω << ωA. Let
|∆A| = |ω − ωA| >> γ , the width of the atomic transition. Thus the excited states of the
atoms can be neglected completely. This is nice because we realize that the setup does not
require the atoms to satisfy some sort of specific internal configuration.

However, we want the pump laser mode to be resonant to the cavity frequency ωC , so that
the incident pump photons are efficiently scattered into the cavity. Thus, ∆c = |ω−ωC | ' κ,
the cavity mode linewidth. The essential ingredient of such schemes is that dissipation takes
place via cavity decay and not by means of spontaneous emission. The coupling strength
between the atoms and the photons are given by the single photon Rabi frequency g which
is in the range of κ. Here, g describes the coupling between atoms and the mode. Feeding
the cavity by atom laser scattering appears as an effective pump with strength η = Ωg/∆A,
which can be thought of as a two photon Rabi Frequency.. where Ω is Rabi frequency of
the assumedly homogenous transverse laser field perpendicular to the axis. What we show
here is that as the pumping strength is increased beyond a certain critical value given by
ηcritical the atoms of the Bose Einstein condensate self organize at either the even or the odd
antinodes of the system.

1.2 The intuitive picture

Before going into the details of the calculations let us try to understand the intuitive picture.
The discussion here is drawn from [2]. We, must realize that that we can no longer think
in terms of the single particle picture, all the atoms in the cavity are coupled to the same
field modes as dissipation channels and this leads to effective long range atom interactions.
The atoms are pumped by the transverse field modes and they coherently scatter photons
into the cavity. The atoms are in the standing mode wavefunction cos(kx) of the cavity.
The atoms at the nodes do not scatter whereas the maximum scattering happens from the
atoms localized near the antinodes of the system. The scattered field amplitude for an atom
depends on the position of the atom inside the cavity. For a uniform field distribution, atoms
separated by half a wavelength contribute with opposite phase and hence they cancel each
other out due to destructive interference. So there is no coherent buildup of field inside the
cavity.

However, there are small density fluctuations in any system, hence there is a small buildup
of field. For, ∆A < 0, this leads to an attractive potential towards the antinodes of the
cavity, thus inducing periodic localization of the atoms. Thus we have a periodic array of
atoms which enhance scattering in certain specific directions, akin to Bragg scattering. If
they coherently scatter in the direction of the optical cavity, then this further deepens the
periodic potential leading to more atoms being localized, enhanced Bragg scattering and
thus we have a feedback loop which further stabilizes the self organization of the system into
a periodic pattern. This process is of course accompanied by dissipation and loss from the
cavity until the system reaches the steady state. But, all is not well, for the atoms which are
now separated by λ/2 should radiate out of phase with each other thus effectively cancelling
each other out and thus no process as described till now should occur. This we will examine
from the quantitative point of view. But basically, what happens that there is a spontaneous
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breaking of symmetry driven by fluctuations which leads the atoms to congregate either in
the ’even’ or ’odd’ antinodes thus leading to constructive interference. The final state is thus
characterized by a breaking of translational symmetry and crystallization, all the atoms are
either in the even position where cos(kx) = 1 or odd position where cos(kx) = −1. It turns
out that this happens only at a field intensity of the lasing mode which is greater than a
critical value.

The other interesting aspect of this phase transition to the ordered state is that con-
structive interference between the various scatterers leads to the buildup of a scattered field
intensity which is quadratic in N , the no. of atoms, as happens when all the field amplitudes
add up. This happens to be the same as the Dicke phase transition. What happens in that
case is that we have a system of interacting two level atoms where each of them are coupled
to an electromagnetic field mode. For sufficient coupling(in our case given critical pump
strength) the system enters the superradiant phase with macroscopic occupation of the field
mode. We later demonstrate how this system is related to the Dicke model.

There have been experiments with BEC’s trapped in an atomic cavity and driven by
a transverse laser mode that have shown the onset of self-organization and superradiance
to be equivalent. In our case the two level system corresponds to two different momentum
states that are coupled via the field mode. At self organization the system moves from a flat
superfluid to a quantum phase characterized by the macroscopic occupation of the higher
order momentum mode and cavity mode as well as spontaneous symmetry breaking both in
the atomic density as well as relative phase between the pump and cavity field. The presence
of crystalline order along with off diagonal long range order allows us to regard this phase
as a supersolid.

2 The Model

This whole section is drawn from [7]. To understand this phase transition let us look
at the dynamics in one dimension x along the cavity mode. This is a good approximation
if the transverse size of the cavity is much bigger when compared with the waist of the
condensate, trapping being achieved for example by means of a transverse magnetic trap.
The cavity field is described by the complex amplitude α where |α| is the square root of the
photon number. The system of equations governing the motion of the cavity mode and the
condensate is analyzed here at the mean field level.

i
∂

∂t
α = [−∆C +N〈U(x)〉 − iκ]α +N〈ηt(x)〉 (1a)

i
∂

∂t
ψ(x, t) =

(
p2

2h̄m
+ |α(t)|2U(x) + 2Re{α(t)}ηt(x) +Ngc|ψ(x, t)|2

)
ψ(x, t) (1b)

Here we are not going to derive these equations, they can be found in [4],[6], but let us talk
about them for a moment. Let us, look at 1a. Each atom changes the cavity resonance
frequency is a spatially dependent manner, U = U0 cos2(kx) where U0 = g2/∆A is the
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amplitude of the shift. As, remarked earlier, for us U0 < 0, in which case the atoms go to
the antinodes of the cavity. Since we are at the mean field level we average over the single
atom wave function ψ and then multiply by N to get the total shift. Here, κ denotes the
loss from the cavity. The factor of ∆C comes when we go to the frame rotating at the laser
frequency ω. The pump term due to scattering between the lasing mode and the cavity
mode η has the spatial dependence of the mode function,η cos(kx) and we average this too
over the single particle wave function and multiply by N. The equation of evolution of the
condensate 1b is a Gross-Pitaevskii equation. The second term on the left hand side is the
backaction of the light shift and hence is proportion to U and the photon number |α|2. The
third term can be interpreted as the back action of the scattering between the pump mode
and the cavity mode. The 2Re{α(t)} term arises due to α + α†, which corresponds to the
absorption or creation of a cavity photon respectively mediated by the atoms. The last term
is present due to the s-wave scattering between the atoms and is not due to interaction with
any radiation field.

2.1 Self-Organization

We must remind ourselves that what we are looking at is not the ground state of the system,
but the stationary state. The condensate is coupled to a decaying cavity field and hence
it loses energy. The system is dissipative owing to photon loss from the cavity. Thus we
have to consider the steady state of a driven open system far from equilibrium and consider
perturbations about this steady state. To begin with look at equations 1a, 1b reveals that
they are invariant under the scaling transformation, α → α/

√
N as long as the parameters

NU0,
√

(N)η,Ngc are kept constant. Thus, we can incorporate the atomic number in the
field amplitude and the system parameters aslong as they are expressed in the combination
above. The realization of this fact helps in the numerical solution of these non linear coupled
differential equations. In the steady state the system is characterized by the field amplitude
α0 and and condensate wave function ψ(x, t) = ψ0(x) exp−iµt. Substituting them in the
above formula, and setting the ∂

∂t
α = 0, we get the set of equations

α0 =
N〈ηt(x)〉

∆C −N〈U〉+ iκ
(2a)

µψ0(x) =

(
p2

2h̄m
+ |α0|2U(x) + 2Re{α0}ηt(x) +Ngc|ψ0(x)|2

)
ψ0(x) (2b)

Here the expectation values have been calculated with respect to the steady state ψ0(x).
These equations have been solved numerically. It is done by assuming some trial solution of
the instantaneous ψ0(x) and then evolving it in imaginary time using equation 1b while at
the same time adiabatically removing the cavity field using equation 2a. The advantage of
using the imaginary time method is that all the energies higher than the ψ0 i.e µ decay faster
and are thus removed, the solution then converges to the steady state BEC wave function.
At each step we make sure that the wave function is normalized.

On adiabatically eliminating the cavity field as described above the resultant potential
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in the GPE 1b is

V (x) = U1 cos(kx) + U2 cos2(kx) (3a)

U1 = 2〈cos(kx)〉NI0[∆C −NU0〈cos2(kx)〉] (3b)

U2 = 〈cos(kx)〉2N2I0U0 (3c)

It would serve to note that the potentials are defined in terms of the wave functions itself as
far as the mean values are concerned. Hence, the equation is nonlinear. A trivial solution of
the equation is the uniform state ψ0(x) =constant and α0 = 0,the potentials U1, U2 = 0 as
〈cos(kx)〉 = 0. However this does not imply that this is a stable solution, because fluctuations
can drive the system away from this state as we will see for appropriate parameters.
Let us look at the behaviour of two quantities now that show the the self organization and
localization of the wavefunction respectively.

Θ = 〈ψ0| cos(kx)|ψ0〉 (4)

. This is a good quantity to look at to understand self organization, for a uniform system
Θ = 0. For self-organization in which the atoms all congregate at the even sites θ = 1(kx =
2nπ), when they are at the odd sites Θ = −1(kx = (2n+ 1)π).
Similarly, another quantity that describes how localized the atoms are can be described by
the bunching parameter,

B = 〈ψ0| cos2(kx)|ψ0〉 (5)

Here, I0 is the depth of the potential,it is given by

I0 =
|η|2

[∆C −NU0B]2 + κ2
(6)

Self organization happens because of the U1 term which is linear in cos(kx), the term
cos2(kx) does not discriminate between the odd and even sites and thus plays no role in the
onset of self organization.
If we set ∆C < −N |U0|(remember that U0 < 0), the sign of U1 is opposite to the sign of the
Θ(refer to equation 3b). Thus, let us suppose that the fluctuations are such that there are
more atoms in the even sites when compared with the odd site. Hence the sign of Θ > 0.
Hence, U1 < 0. As a result, now the even sites are the minima of the U1 potential, whereas
the odd sites are the maxima. Thus, more of the atoms are attracted to the even sites,
resulting in a runaway effect. On the other hand when fluctuations have more atoms at the
odd sites when compared with the even sites,Θ < 0, U1 > 0, thus the odd sites are now
the minima of the potential, and this encourages more atoms to go to the odd sites. The
λ periodic lattice of condensate atoms fulfils the Bragg criterion of constructive interference
and the atoms scatter pump photons into the cavity(η 6= 0). There are of course dissipative
processes(cavity loss) which take away the potential energy that gets converted into kinetic
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Figure 2: taken from [7]

energy when the atoms fall into the wells. Also, the kinetic energy, interatomic interactions
and collisions try to oppose the localization of the wave functions inside the cavity, and try
to spread the wave function out.

2.2 Simulations and critical pump power

Now, let us look at the numerical solution of eqns 1a, 1b and see whether we get the self
organization predicted above as we increase the pump power. The onset of self organization
is indicated by the increase of the parameter Θ from 0 to 1. in the simulations the parameters
are expressed in units of the recoil energy h̄ωr = h̄2k2

2m
and the wavelength λ of the cavity

field. Thus, when Θ is plotted as a function of the pump power
√
Nη, above a critical value

we see the onset of self organization as Θ increases from 0 to 1 as we see in Figure 2. This
is accompanied by a spontaneous symmetry breaking as the atoms either occupy kx = 0or
kx = π. The localization of the atoms is indicated when we plot |ψ0(x)|2. As we increase
the pump power the atoms become more and more localized.
This reminds us of the Mott-insulator transition. In that case when the atom interactions
are increased, multiple occupation of the sites is disfavoured , hence the system is driven to
the localized phase with the atoms evenly distributed among the sites. However, when the
kinetic energy dominates the interatomic interaction, the atoms are completely delocalized in
the system leading to the superfluid state. In contrast for self organization the competition
is between the kinetic energy and the energy of the cavity field. From the simulations, we
see that at lower pump power the kinetic energy dominates, the condensate is completely
delocalized. As the pump power is increased the atomic potential gradually deepens and the
system becomes more and more localized. This is very nicely demonstrated in the results of
the numerical simulations. The interatomic interaction also opposes the localization of the
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wavefunction and tends to spread it out.
The critical pump power is determined by looking at perturbations to the uniform ground
state and determining for what value of the pump power it becomes unstable.
Let us look at the equations 2a, 2b. The trivial state is given by, ψ0=constant,α0 = 0, µ =
Ngc. If we want to get a non zero value of the cavity field α0 we must have a non zero
perturbation of the wave function modulated by cos(kx) in the wave function ψ0 as we see
from equation 2a.

Hence the strategy is to introduce a small perturbation to the trivial wave function making
it ψ0 = 1+ε cos(kx), evolve it in imaginary time and thus determine what range of parameters
makes the perturbation grow. Thus we can understand at what set of parameters the trivial
wave function is unstable to fluctuations of the length scale of the cavity wavelength. To do
that we put the perturbed wave function in equation 2b and replace the photon no. α0 in
2b from 2a. We get the equation

∆ψ

∆τ
= −Ngc − ε cos(kx)×

{
ωR +Nη2 2∆C −NU0

(∆C −NU0/2)2 + κ2
+ 3Ngc

}
(7)

From the above equation we see that as expected the homogenous part of the wave function
decays at the rate Ngc, whereas the perturbation decays at the rate given by the term in
the brackets. In order that the fluctuation will lead to self organization, we require that the
rate of decay of the fluctuation should be less than or in the critical case be equal to that of
the homogenous condensate Ngc. So we set the term in the brackets equal to Ngc and get
for the critical pump power

√
Nηc =

√
(∆C −NU0/2)2 + κ2

2∆C −NU0

√
ωR + 2Ngc (8)

2.3 Connection with the Dicke Phase transition

The description in this section is drawn primarily from [1]. Let us talk about the
relation of self organization to the Dicke phase transition. To draw a connection with the
experimental evidence described in the next section, let us go back to the setup described
in section 1.1 and in figure 1 where the cavity mode is along the x axis and the pump laser
is along the z axis. Scattering between the pump field and the cavity mode creates a lattice
potential in the x-z plane. The relative phase between the pump and the cavity field can
either be 0 or π. When spontaneous symmetry breaking due to self organization happens
the relative phase has value either 0 or π at all occupied positions. Now, analogous to the
previous section, the order parameter describing the phase transition Θ = 〈cos(kx) cos(kz)〉.
Θ = ±1(depending upon whether even or odd sites are preferentially occupied). In the dicke
transition we have a system of two level atoms which are coupled to an electromagnetic field.
for sufficient coupling the system enters a superradiant phase with macroscopic occupation
of the field mode. Here we will not describe the Dicke model. Rather the path we take is to
show that the model of self organization we have already shown is equivalent to the Dicke
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Figure 3: taken from [1]. Light scattering between the pump field and the cavity mode
couples the zero momentum state |0, 0〉 to the superposition of states |± h̄k,±h̄k〉. This can
happen through two channels as shown schematically in the above diagram

model, and show how to recast the description in terms of a two -level system which above
a critical coupling(critical pump power) goes into superradiant phase.

Intially the BEC is in the state |px, pz〉 = |0, 0〉; due to photon scattering this state gets
coupled to the symmetric superposition of states which carry equal momentum along the
x and z directions.

∑
µ,ν=±1 |µh̄k, νh̄k〉/2. The energy of this state is thus twice the recoil

energy Er = h̄2k2

2m
when compared with the zero energy state. It does so by two processe as

shown is 3, a)absorption of a pump photon followed by emission into the cavity(a†J+) b)
absorption of a cavity photon followed by emission into the pump, aJ+. Here, J+ = J†− =∑

i |± h̄k,±h̄k〉i〈0, 0| So, the second quantized Hamiltonian has the term (a†+a)(J+ +J−).
which is the same as the Dicke Hamiltonian. At self organization both the cavity field
and so to speak the ’atomic polarization’,(as the higher energy state is occupied) acquire
macroscopic values.

3 Experiments

In this section we describe the experimental evidence that has shown the existence of the
self organized phase and corresponding supperradiant Dicke transition and shows the on-
set of one means the onset of the other. Although a number of experiments have been
done to show self organization, here we focus on the experiments reported in [1].
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quantumphase transition from a normal phase to a superradiant phase

/2.

The experimental realization of the Dicke quantum phase transi-
tion is usually inhibited because the transition frequencies by far
exceed the available dipole coupling strengths. Using optical

atomic modes from the optical scale to a much lower energy scale,
whichmakes the phase transition experimentally accessible. A similar

considered using two balanced Raman channels between different
electronic (instead of motional) states of an atomic ensemble inter-

. It is

subject to cavity loss. Therefore, they realize a dynamical version of

output field offers the unique possibility to monitor the phase transi-
.

BEC, we gradually increase the pump power over time while monitor-
ing the light leaking out of the cavity; see Fig. 1 andMethods Summary.

power reaches the critical value, an abrupt increase in the mean intra-
cavity photon number marks the onset of self-organization (Fig. 3a).
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Figure 3 | Observation of the phase transition. a–d, The pump power
(dashed) is gradually increased while the mean intracavity photon number
(solid; 20-ms bins) is monitored. After the sudden release of the atomic cloud
and its subsequent ballistic expansion for 6ms, absorption images (clipped
equally in atomic density) are made for pump powers corresponding to
lattice depths of 2.6Er (b), 7.0Er (c) and 8.8Er (d). Self-organization is
manifested by an abrupt build-up of the cavity field accompanied by the
formation of momentum components at (px, pz)5 (6Bk,6Bk) (d). The
weakmomentumcomponents at (0,62Bk) (c) result from loading the atoms
into the one-dimensional standing-wave potential of the pump laser. The
pump–cavity detuning was Dc522p3 14.9(2)MHz and the atom number
was N5 1.5(3)3 105 (parentheses show uncertainty in last digit).

Figure 4: Figure from [1]

These experiments are
done with BEC’s made
with typically 105 Rb87

atoms trapped in a dipo-
lar atomic trap which is
centred inside a ultra-
high finesse Fabry Perot
cavity. The atoms are
driven perpendicularly in
the z direction by a red-
detuned laser beam, the
atom pump detuning is
more than five orders
of magnitude when com-
pared with the atomic
linewidth, and hence spon-
taneous emission can be
safely neglected.
The light leaking out
of the cavity is mea-
sured with a single pho-
ton counting module. The
atomic momentum distri-
bution is inferred from
absorption imaging along
the y axis after a few mil-
liseconds of free ballistic
expansion of the atomic
cloud. For our purposes,
this is as far as we will go
into the details of the experimental setup.

Looking at figure 4 we see that at pump power below the critical value, the mean number
of photons is negligible and the BEC has the expected uniform momentum distribution of
the condensate loaded in a shallow optical cavity. However, as the pump is ramped up be-
yond the critical value we see a sharp increase in the mean number of photons in the system
indicating a macroscopic occupation of the cavity field. Simultaneously, when we look at
the momentum resolved images of the condensate we see that we have a sharp change with
additional components appearing at (±h̄k,±h̄k), exactly as we expected. Thus we have a
density modulation as in a crystalline phase.

It was also found in this experiments that the self organized phase was stabilized by light
scattering forces. However, if the pump intensity is kept constant we see a steady decrease
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in photon number, this was attributed to the atom loss caused by residual spontaneous
scattering.

4 Conclusion

To conclude it has been shown how a BEC loaded in an optical cavity driven by a transverse
laser field can undergo a spontaneous phase transition to either one of two symmetry broken
states where either odd or even sites are occupied depending upon the fluctuations in the
system, for a certain range of parameters and as long as the pump power is greater than a
critical value.
It has also been shown that the intensity of the scattered light at the self organized state goes
quadratically as the number of atoms. Following that lead, we have motivated the mapping
of this system to the Dicke quantum phase transition.
At self organization the BEC enters a supersolid state with existence of non trivial diago-
nal long range order associated with density modulation and off diagonal long range order
associated with phase coherence. Along with that an experimental finding was reported
where this self organization was observed in the momentum resolved imaging after ballistic
expansion.
However, it should be noted that the whole analysis was done at the mean field level, to
obtain a more complete picture we must understand whether the self organized state is stable
to fluctuations and interactions beyond the mean field treatment.
The other important consideration is determining the quantum depletion and whether phase
coherence is there as the atoms are kicked out of their condensed state due to atom atom
and atom light interactions. Then, the validity of the method used would be questionable.
An analysis of depletion with the cavity linewidth set to zero was performed in [7], it was
found that the number of noncondensed atoms indeed blows up at the critical power. This
indicates that the present analysis is ok except in a small region around the critical point.
A more systematic analysis with the cavity mode linewidth κ 6= 0 needs to be performed.

Finally, it should be noted that other work has been done in [3] where the phenomenon
of BEC trapped in a cavity coupled to a continuum of modes is considered. In this case the
transition to the ordered phase is associated with the breaking of a continuous translational
symmetry as in conventional crystalline ordering. This opens up avenues for realizing other
phenomenon like defects, grain boundaries and dislocations.
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