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Abstract

This paper contains a review of dilute Bose-Einstein gas, both in a box
and in a harmonic trap, and when they form condensates. As the Bose-
Einstein condensate (BEC) begins to rotate vortices begin to appear and
their dynamics are studied. For more rapid rotation, the vortices begin to
form regular arrays and for very high rotation rates, one begins to see Landau
levels. Eventually as the rotation rate approaches the radial trap frequency,
there is an expected quantum phase transition to a highly correlated state
analogous to those found in fractional quantum hall effect for electrons in a
strong external magnetic field.
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1. Introduction

The outline and format of this paper closely follows the review paper by
A. Fetter [1]. Any and all details may be found in this review and the refer-
ences included in the review. Section 2 of this paper begins with a recap of
BEC in an ideal bose gas both in a box as well as in a harmonic trap. The
effects of interactions are also studied. The effects a few vortices in a rotating
BEC are considered and their stability at different rotation rates are analyzed
in section 3. Section 4 deals with vortex arrays in the Thomas-Fermi (TF)
regime. Various aspects of rotation rates on the vortex arrays are studied and
corresponding experimental results are provided where available. The next
section discusses the lowest Landau level (LLL) regime and the transition to
a highly correlated state at extremely high rotation rates. The last section
contains a brief summary and the conclusion.

2. Physics of BEC in dilute trapped gases

2.1 Ideal Bose Gas

Let us first consider an ideal Bose gas in an external trap potential Vtr
with a complete set of single particle energies εj. The mean occupation of
a specific state is given by the familiar expression nj = (eβ(εj−µ))−1. The
classical regime corresponds to the situation where nλ3T � 1, where n is the
mean density of particles and λT = h/

√
MkBT is the thermal wavelength. In

this regime the chemical potential µ is large and negative. As the temperature
decreases or equivalently the density increases, µ grows. The onset of BEC
at some critical temperature Tc is given by the relation µ(Tc, N) = ε0, where
ε0 is the ground state energy in the potential Vtr. Below Tc, µ is fixed at this
value and the ground state is characterized by a macroscopic occupation.
The number of particles not in the condensate N

′
(T ) is given by

N
′
(T ) =

∫
dε

g(ε)

eβ(ε−ε0) − 1
(1)

The total number of particles is then given as N = N0(T ) +N
′
(T ).

Let us now consider two specific situations when the BEC is in a box with
periodic boundary conditions and when it is placed in a harmonic trap.

When the ideal BEC is placed in a box with periodic boundary conditions
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(say a box of volume V ), the single particle eigenstates are simply plane
waves (i.e. ψk(r) ≈ eik.r) with energies εk = ~2k2/(2M). Here ki = 2πni/L
is quantized along each of the directions with ni an integer and the lowest
energy state is ε0 = 0. The density of states g(ε) is

g(ε) =
V

4π2
(
2M

~2
)3/2ε1/2 (2)

For T < Tc one can show that

N0(T )

N
= 1−

(
T

Tc

)3/2

(3)

Note that the above result can be generalized to any dimension d for
d > 2. However, the integral in (1) diverges for d ≤ 2. Hence a uniform gas
cannot from a BEC in one or two dimensions.

Now consider a BEC in an external anisotropic harmonic trap of the form

Vtr(r) =
1

2
M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) (4)

The single particle energies are given as ε = ~(nxωx + nyωy + nzωz) + ε0,
where ni are nonnegative integers and ε0 = 1

2
~(ωx+ωy +ωz) is the zero point

energy. The corresponding density of states is

g(ε) =
ε2

2~3ω3
0

(5)

where ω3
0 = ωxωyωz defines a geometric mean trap frequency. Once again

BEC in the harmonic trap occurs when µ = ε0 and the following temperature
dependent equation can be obtained.

N0(T )

N
= 1−

(
T

Tc

)3

(6)

Note that the BEC in a harmonic trap does not have a divergence in (1) for
d = 2. This implies that the two dimensional bose gas in a harmonic trap
can form a BEC with a finite transition temperature Tc. This is a major
difference between a BEC in a harmonic trap compared to a BEC in a box.
The rest of this paper focuses on BEC in a trap.
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2.2 Effects of interparticle interactions

The Gross-Pitaevskii (GP) energy functional for a BEC in a trap with
confining potential Vtr is given by

EGP [Ψ] =

∫
dV

(
~2|∇Ψ|2

2M
+ Vtr|Ψ|2 +

1

2
g|Ψ|4

)
(7)

Here Ψ represents the macroscopic condensate wave function. The first
two terms in the above expression are the kinetic energy and the trap po-
tential respectively. The last (quartic) term describes the effect of interac-
tions. Comparison of the kinetic and trap energies yields the oscillator length
d0 =

√
~/Mω0 which characterizes the mean size of the non-interacting con-

densate. Similarly a comparison between the kinetic and interaction energies
yields the healing length ξ = ~/

√
2Mgn which characterizes the length scale

over which the condensate heals back to its uniform value n (the condensate
density). Bogoliubov noticed that the repulsive interparticle interactions can
be characterized by a positive s-wave scattering length a, which is typically
a few nanometers for dilute alkali metals of interest. This along with d0,
yields a new dimensionless parameter Na/d0 which acts a measure of how
important the interactions are. In the usual situation, this parameter is large
resulting in the regime known as Thomas-Fermi (TF) limit. In this case the
repulsive interactions dominate and the mean radius R0 greatly exceeds the
mean oscillator length d0 making the kinetic energy negligible. Dropping the
kinetic energy term from (7) and minimizing with respect to |Ψ|2, we get the
TF approximation (which is a special case of the general GP equation)

Vtr + g|Ψ(r)|2 = µ (8)

Using the expression for the trap potential discussed above one can derive
the relation d0 =

√
ξR0. Here R3

0 = RxRyRz and Ri are the condensate radii
along different directions. This also yields a clear separation between the
length scales in the TF limit ξ � d0 � R0.

One can also consider the general time-dependent GP equation

i~
∂Ψ(r, t)

∂t
=

[
−~2∇2

2M
+ Vtr(r) + g|Ψ(r, t)|2

]
Ψ(r, t) (9)

Assuming a stationary nonuniform condensate wavefunction and consid-
ering small perturbations around this state, one can compute the spectrum
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Ek =

[
gn~2k2

M
+

(
~2k2

2M

)2
]1/2

(10)

where n is the condensate density and µ ≈ gn for the uniform gas. In the
long wavelength limit (kξ � 1), the spectrum reduces to the familiar phonon
spectrum Ek ≈ ~sk where s =

√
gn/M is the speed of compressional sound.

In the opposite case when kξ � 1 the spectrum becomes a free particle spec-
trum. This expression is similar to the quasiparticle spectrum predicted by
Landau for superfluid Helium. In the case of superfluid helium there exists
a critical velocity above which dissipation occurs. For the above spectrum
vc = s. Note that as s =

√
gn/M , this implies that s exists only because

g > 0 i.e. the interactions are repulsive. This means that an ideal Bose gas
(g = 0) can never be a superfluid even at T = 0 even though a k = 0 con-
densate is present. Thus the occurrence of superfluidity in a uniform dilute
bose gas is purely due to the presence of repulsive interactions.

3. Physics of few vortices in a trap

The local velocity field can be expressed as v = ∇Φ where Φ is propor-
tional to the phase of the macroscopic condensate wave function. This along
with the single valuedness of the wavefunction can be used to show that any
circulation in a dilute BEC must be quantized in units of 2π~/M . The im-
portant point here is that results of vortex dynamics in an irrotational fluid
may be carried over to a dilute BEC. However, for a BEC in a trap, the
nonuniformity of the density severely affects the vortex dynamics.

A classical viscous fluid in a container that rotates with angular velocity
Ω, also acquires the same velocity. Consider a static Hamiltonian H(r, p)
with a trap potential. A transformation to the laboratory frame gives

H
′
(r

′
, p

′
) = H(r

′
, p

′
)− Ω · L(r

′
, p′) (11)

where the primed coordinates and primed terms represent quantities in
the rotating frame. This yields the modified GP equation written in the
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rotating frame

E
′
[Ψ] =

∫
dV

[
~2

2M
|∇Ψ(r)|2 + Vtr(r)|Ψ(r)|2 +

1

2
g|Ψ(r)|4 − Ω ·Ψ∗(r)r× pΨ(r)

]
(12)

Note that the last term favors states with nonzero (positive) Ω. The following
analysis is performed in the TF limit where ξ � d0 � R0. In the presence
of vortices, ξ also corresponds to the vortex core size. The presence of a few
vortices does not affect the number density significantly.

Figure 1: Precession of vortex in a trapped
BEC. From [2]

One can compute the stability of
a vortex for different rotation rates
Ω. The regimes depend on a quan-
tity Ωc which is interpreted as the
thermodynamic critical angular ve-
locity for the creation of a singly
quantized vortex in the TF limit.
Define Ωm = 3

5
Ωc. When Ω < Ωm,

the vortex state is unstable and it
moves away from the center until it
spirals out of the edge. For Ωm <
Ω < Ωc, the vortex state is locally stable near the center of the trap but not
globally. Finally for Ω > Ωc, the central vortex is both locally and globally
stable.

One may also study the dynamics of a trapped vortex by studying the
time-dependent GP equation. Applying this to a single straight vortex in a
disk shaped condensate produces a solution with an angular precession of a
trapped vortex. This is shown experimentally in Fig. 1.

4. Vortex arrays in mean-field TF regime

Consider an incompressible fluid with velocity v(r) in a container rotating
with angular velocity Ω. The relevant energy terms are

E
′
=

∫
dV

(
1

2
Mv2 −MΩ · r × v

)
n (13)
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Figure 2: Sideview of BEC in a trap. As the
rotation rate increases the axial direction is
severely compressed and the radial direction
expands. From [3]

where n(r) is the number den-
sity. Re-expressing the above equa-
tion one can show show that the ab-
solute minimum of E

′
is when v =

Ω × r. By using energy arguments
and the quantization of vortices in a
superfluid, one gets

nv =
MΩ

π~
(14)

This shows that an increase in the rotation rate also increases the vortex
density nv. The above relation holds strictly for a superfluid in a rotating
bucket. When put in a harmonic trap, one has to consider corrections due to
centrifugal forces which expand the condensate radially and shrinks it along
the rotation axis. As a result the total number of vortices increases at a rate
faster than linearly with Ω. To quantify this dependence is rather detailed.
The final result in the TF limit is

R⊥(Ω)

R0(0)
=

(
1− Ω2

ω2
⊥

)−3/10
,
Rz(Ω)

Rz(0)
=

(
1− Ω2

ω2
⊥

)1/5

(15)

Here the sublabels ⊥ and z refer to the direction perpendicular and par-
allel to the axis of rotation Ω respectively. ω⊥ is the frequency of the trap in
the radial direction. As mentioned earlier the condensate expands radially
and shrinks axially as Ω is increased approaching a two-dimensional con-
figuration. The below ratio acts as a tool to determine the actual angular
velocity. Fig. 2 shows some experimental data.

Rz(Ω)

R⊥(Ω)
=

√
ω2
⊥ − Ω2

ωz
(16)

Also the chemical potential can be computed to be

µTF (Ω) = µTF (0)(1− Ω2/ω2
⊥)2/5 (17)

This shows that the chemical potential decreases continuously and van-
ishes as Ω → ω⊥ indicating a lack of radial confinement for high rotation
rates.
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Figure 3: Observation of vortex lattices.
From reference [4]

These rapidly rotating conden-
sates also tend to form dense arrays
of vortices. Fig. 3 shows experimen-
tal evidence of highly uniform trian-
gular vortex lattices that closely re-
semble those of Abrikosov lattices in
type II superconductors.

The effects of rapid rotation
on the condensate were discussed
above. Another aspect is its effects
on the vortex core radius ξ. Define l to be the radius of the cell and
Ω = Ω/ω⊥. It was found that for small and moderate Ω, rcore ≈ ξ. As
Ω → 1, the ratio r2core/l

2 saturates at a value 1
2
. Fig. 4 shows experimental

and numerical values (See references in [1]). For small values of Ω, ξ2 ∝ Ω
in the TF limit. As Ω rises to the critical value ω⊥ the core area saturates
to a constant value.

Figure 4: Vortex core area as a function of
rotation rate. For higher rotation rates the
vortex core area appears to saturate to some
constant value. From reference [5]

Now let us turn to the vortex
array. Tkachenko showed that the
triangular lattice has the lowest en-
ergy (for lattices with one vortex per
unit cell). This was also seen earlier
in Fig. 3. Further, he also deter-
mined the small-amplitude normal
modes of a vortex lattice, along with
the corresponding eigenvectors for a
given wave vector k lying in the x-y
plane perpendicular to Ω. The re-
sult for long wavelengths (kl � 1),
where l =

√
~/MΩ is the vortex

cell-radius, is a primarily transverse
wave with linear dispersion ω(k) ≈
cTk, where cT = 1

2
lΩ is the trans-

verse propagation speed. This is es-
sentially a long wavelength photon
in the vortex lattice. Recall that rapidly rotating BEC are axially com-
pressed making them more two dimensional. This work of Tkachenko was
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generalized to find the following long-wavelength dispersion

ω(k)2 ≈ c2Tk
2 s2k2

4Ω2 + s2k2
(18)

where s is the speed of sound. These Tkachenko oscillations were observed in
considerable detail (Fig. 5 which shows the image of the resultant distorted
lattice). The lines in the figure are a sine fit and indicate the distortion of
the lattice. Though the normal mode has the right shape, the measured
frequency is less compared to (18).

Figure 5: Lowest Tkachenko mode of the
vortex lattice. From reference [6]

As seen earlier, in the mean-field
TF regime, for a harmonic trap with
radial frequency Ω > ω⊥ the system
cannot be confined. It is thus useful
to consider the effects of adding a
stronger confining potential like r4.
Such a trap will confine the system
even for frequencies above ω⊥ giving
rise to new states. The result is

g|Ψ(r)|2 = µ+
1

2
[(Ω2 − 1)r2 − λr4]

(19)
Once again µ decreases as Ω in-

creases. Further for a critical value Ωh > 1, the chemical potential can vanish
when the central density is also zero. This indicates the formation of a cen-
tral hole. For rotation rates above Ωh, µ < 0 and the condensate assumes an
annular form. As Ω further increases, there is a possible second transition
to a purely irrotational (vortex-free) state known as a ’giant vortex’. These
effects were studied experimentally in Fig. 6 which shows the vortex array
for various rotation speeds. Initially, one can see a regular vortex array. Be-
yond a certain frequency, the array appears irregular and a local minimum
in the density can be seen near the center in Fig. 6 d), e) and f). The last
two figures i.e Fig. 6 g) and h) are puzzling. In Fig. 6 g) there is an absence
of visible vortices whereas in Fig. 6 h) the condensate collapses, the reason
for which is still unknown.
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Figure 6: Pictures of rotating gas taken along rotation axis. From [7]

5. Vortex arrays in mean-field LLL regime

The basic assumption of the mean-field TF description was the neglect
of the kinetic energy associated with density variations as the vortex cores
are small. As the rotation frequency increase, the vortex cores become com-
parable to the intervortex separation and the above assumption is no longer
valid. In this regime the condensate becomes two-dimensional and the in-
teraction energy per particle is small. Neglecting the interaction makes the
Hamiltonian quadratic and exactly solvable.

Let us begin by considering a simpler problem, one of a two-dimensional
harmonic oscillator (nonrotating). The motion of the oscillator corresponds
to that of a two independent oscillators (along x and y) giving rise to circular
motion with frequency ω⊥. When viewed in a frame rotating with frequency
Ω, we get ω± = ω⊥ ∓ Ω. A more appropriate quantum mechanical descrip-
tion involves using creation and annihilation operators and for convenience
circularly polarized states, a± and a+±, are used. Expressing the Hamilto-
nian in term of these operators, it is easy to compute the energy eigenvalues
ε(n+, n−) = n+~(ω⊥−Ω) + n−~(ω⊥ + Ω) where n+ and n− are integers. For
rapid rotation rates as Ω→ ω⊥, the important contribution to ε is from the
n− term and n− becomes the Landau level index with the different landau
levels separated by ≈ 2~ω⊥. These lowest Landau level (LLL) wave functions
appear in fractional quantum hall effect for two dimensional electrons in a
strong magnetic field. Hence this regime is referred to as the quantum hall
regime.

The LLL regime is valid when 1−Z/2Nã ≤ Ω where ã is the renormalized
scattering length. In experiments Ω ≥ 0.99 to reach this regime. The mean-
field LLL regime has a BEC with macroscopic occupation and is a superfluid.
For even higher Ω, there is another quantum phase transition to a highly
correlated ground state Ψcorr.
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Consider the ratio ν = N/Nv (whereNv is the number of vortices) which is
known as the filling factor in analogy with a similar quantity in the quantum
hall effect. Numerous studies show that the GP vortex lattice is the ground
state for νc ≈ 6 − 10 where the specific value depends on the number of
vortices and geometry of the system. Vortex lattices are stable for ν >
νc. This is a ground state that breaks rotational symmetry. On the other
hand for ν < νc, the ground states are rotationally symmetric incompressible
vortex liquids that are eigenstates of Lz. These states have close analogies
to the fractional quantum hall states for a two dimensional electron gas in a
strong magnetic field. The simplest of these many body states is the bosonic
Laughlin state. Let us point out some of the crucial differences between these
Laughlin type states and the GP states we saw earlier. Firstly, the Laughlin
state has a product factor which implies the absence of off-diagonal long
range order and hence no BEC. The Laughlin state also vanishes whenever
two particles are at the same location. In contrast the GP ground state has
all the particles in a single ψLLL state.

To qualitatively understand the nature of the transition considerN bosonic
particles in a two dimensional plane (resulting in 2N degrees of freedom).
Vortices appear when the system rotates. These vortices have Nv collec-
tive degrees of freedom and tend to reduce the overall degrees of freedom to
2N −Nv. When the system is rotating slowly the 2N degrees of freedom of
the bosonic particles sufficiently describe the system as Nv � N . However,
when Nv is comparable to N , there is a significant reduction in the overall
degrees of freedom resulting in a transition to a completely different state.
There are several proposals to study these states experimentally. More de-
tailed references can be found in [1].

6. Summary and Conclusion

For slow rotation rates (Ω = Ω/ω⊥ << 1), the condensate only has a
few vortices. The overall density profile can be well described using that
of a nonrotating condensate apart from the vortex cores. Experiments have
been able to study the dynamics of vortices in such systems. See review [1]
for references to experimental studies. As the rotation rate increases, the
centrifugal forces cause the condensate to distort. For Ω (typically 0.75 ≤
Ω ≤ 0.99) not too large, the intervortex spacing ≈ l =

√
~/MΩ is large

compared to ξ, the vortex core size. This is the Thomas-Fermi (TF) regime
where the kinetic energy term is negligible. For very large rotation speeds
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(0.99 ≤ Ω ≤ 0.999), the vortex cores begin to expand. Hence l is no longer
large compared to ξ. Here the interaction energy can be neglected. This
is mean-field lowest-Landau level (LLL) regime and is the rotational analog
of the landau levels for an electron in an uniform magnetic field. These
degenerate landau levels are separated by an energy gap ≈ 2~ωp. Here the
LLL states provide a convenient description. Finally for Ω ≥ 0.999, there is
a quantum phase transition to a highly correlated state. The exact nature
of these states and the complicated phase transitions in this regime are still
under debate.

This term paper contains a very brief overview of rotating BEC, formation
and role of vortices at different rotation rates. There are many remarkable
experiments and several theoretical predictions (only some of which are men-
tion here), many of which still need to be verified experimentally.
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