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1 Review

Phase transitions occur in the great variety of physical systems. The first order phase
transitions are well studied, and humanity has been dealing with them from literally
primeval times. On the other hand, the second order phase transitions are not that
straightforward: they have been concealed from keen scientists for a really long time.
To name some of them, we can think of paramagnet-ferromagnet, fluid-superfluid,
amorphous-crystal and normal-superconducting transitions, etc. Such a wide range
of branches did not prevent from creating a general theory of phase transitions, which
can be applied with certain limitations to any second order phase transition. Here
we will try to study superconducting-normal phase transition for both types of super-
conductors, using mostly Landau theory of second order phase transition, or particu-
larly Ginzburg-Landau (GL) functional for superconductivity. A review on the time-
dependent GL theory, numerical simulations and problems arising will be reported.
One possible technological application in accelerator physics will be discussed as well.

1.1 Ginzburg-Landau theory

V. L. Ginzburg and L. D. Landau were the first who combined order parameter and
wave function to describe superconducting phase transition. In Landau theory the
free energy is expanded in powers of the order parameter. |Ψ(r)|2 is taken to equal
ns/2, where ns is the superconducting electron density. In the presence of magnetic
field, the Gibbs free energy is as follows [1]:
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To find the solution one needs to minimize the Gibbs free energy, i.e. to solve the
variational problem with respect to Ψ∗(r), Ψ(r) and A(r). This operation leads to the
stationary Ginzburg-Landau equations, providing the variational derivatives are zero.
Two parameters are introduced in GL-theory:

ξ2 =
h̄2

4m|α| (2)

is the coherence length, which is essentially the scale of order parameter variation, and

λ2 =
mc2

4πnse2 =
mc2β

8πe2|α| (3)

is the London penetration depth, characterizing the magnetic field decay in a super-
conductor.

The Ginzburg-Landau parameter

κ = λ/ξ (4)

depends on the material and defines the type of the superconductor. For type-I ma-
terial κ < 1/

√
2 and the surface energy is greater than zero, so it is energetically fa-

vorable to form continuous superconducting or normal state. For type-II κ > 1/
√

2
and the surface energy is less than zero, so it is favorable to form finely intermixed
composite state of normal and superconducting phase at some range of applied field.

1.2 Types of superconductivity

Type-I superconductivity was discovered first and for more than 40 years the different
type existence was not being suspected. A. A. Abrikosov in his fundamental work [2]
predicted another type of superconductivity, giving reason to search for the whole new
class of phenomena. Type-I superconductors exhibit Meissner-Ochsenfeld effect: they
completely eject magnetic field till it reaches some critical value. Then superconductor
becomes normal conductor. Different situation takes place in type-II superconductors:
magnetic field there starts to penetrate inside the superconducting material if applied
field is greater than some critical value Hc1. Unlike for type-I (Fig. 1), for type-II super-
conductors magnetic field does not completely destroy superconducting phase until it
reaches another critical value Hc2 (Fig. 2).
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(a) (b)
Figure 1. (a) Magnetization curve, (b) dependence of magnetic moment per unit volume M on
the external field H0 for type-I superconductor [1].

(a) (b)
Figure 2. (a) Magnetization curve, (b) dependence of magnetic moment per unit volume M on
the external field H0 for type-II superconductor [1].

1.3 Vortex interaction in type-II superconductors

Magnetic field penetrates the type-II superconductor in the shape of quantum vortex
lines. Every vortex line has (a) a normal core along the direction of applied magnetic
field, (b) hence a zero order parameter in the center, and (c) a radius, approximately
equal to the coherence length ξ. Vortex current exists in the area of radius λ around
the normal core, which in the same time is the approximate distance between closest
vortices. If applied magnetic field is increased further, H0 > Hc1, vortices starts to
approach each other, till their normal cores overlap at Hc2. In this case second order
phase transition to the normal state occurs.

For type-II superconductors, if λ � ξ, the energy of one vortex line is given
by [3]

F =

(
Φ0

4πλ

)2

· (lnλ

ξ
+ ε), ε ≈ 0.1, (5)

where Φ0 = hc
2e is flux quantum and ε corresponds to the approximately calculated

contribution of the normal core.
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Energy of two interacting vortices [3]

F = F1 + F2 + U12 = F1 + F2 +
Φ0 · h12

4π
L, (6)

where F1 and F2 are the energies of the isolated vortices, L is the length of one of the
vortex lines, h12 = h1(r2) = h2(r1) =

Φ0
2πλ2 K0

(
|r1−r2|

λ

)
is the field of one vortex line in

the center of another vortex line, K0 is the zero-order Bessel function with imaginary
argument. Interaction between two vortices in type-II superconductors is thereby re-
pulsive. Normally vortices form a regular triangle lattice [1].

Vortex approach can also be used in type-I superconductors in order to demon-
strate the mechanism of the first order phase transition. Surface energy for κ > 1√

2
is

positive, vortex interaction is attractive, so vortices tend to form continuum medium,
extirpating as far as possible the normal-superconducting interface.

2 Phase transition kinetics

2.1 Time-dependent Ginzburg-Landau functional

Previous speculations about Ginzburg-Landau functional concerned only stationary
order parameter (1). As long as we would like to study the time-dependent phase tran-
sition properties, it is natural to assume that one should use Ginzburg-Landau theory
as a good technique for phase transition description. Not only spatial variation of the
order parameter should be found, but also time variation. Non-stationary Ginzburg-
Landau theory generalization would do perfectly in this case, and one of the most
straightforward applications would be the normal-superconducting interface propa-
gation. The problem of time-dependent theory of superconductivity drew attention
for many years, and a derivation of the generalized time-dependent GL-theory with-
out a hitch was an obsession [4]. Temperature range simplifications made in stationary
GL-theory gave hope for the possibility of the same simplifications in time-dependent
theory of superconductivity. Unfortunately, it turned out to be in general untrue. The
dynamic behavior of the order parameter cannot be described by a simple differential
equation [4]. Nonlinear terms can only be derived in case of gapless superconductor.
The complication follows the singularity in the density of states (DOS) on the edge
of the superconducting energy gap [5][6]. This singularity results in the appearance
of the weakly damping, oscillating terms, i.e. the dissipative processes occur in the
superconductor due to the time variation of the order parameter. Earlier works were
either wrong, or restricted to the linear term in GL functional or to some other more
grave conditions, than it was implied by the authors. Gor’kov and Eliashberg [5] were
the first who derived the only strict time-dependent version of GL equation, applica-
ble in a reasonable range of fields and frequencies, but still valid only for a gapless
superconductor. Magnetic impurities and other decoupling mechanisms weaken the
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DOS singularity in BCS [7], and the energy spectrum becomes gapless. In this case
the energy can be expanded in powers of ∆/α and ω/α, where α is the decoupling
parameter [7]. This approach was used by Gor’kov and Eliashberg.

From now we will assume the superconductor to be always in the state of local
equilibrium with the charge density of the electrons ρ, internal energy Eint, vector
potential A and order parameter δ [4]. Conservation laws for ρ, entropy S and total
energy E are valid:

∂ρ

∂t
+∇ · J = 0, (7)

∂S
∂t

+∇ · JS =
R
T

, (8)

∂Et

∂t
+∇ · JE = 0, (9)

where J, JS, and JE are the currents of respectively charge. entropy and energy, R is the
dissipative function. Besides the losses due to Joule heating, there are also losses as a
result of finite relaxation time of the superconducting electrons, according to Tinkham
(1964). In order to describe the superconductor, the Maxwell equations are also used,
as well as the “equation of motion” for the order parameter. As it usually done in
phenomenological approach, we will take the order parameter time derivative to be
equal with some constant to the functional derivative of the free energy with respect
to order parameter. Free energy functional is acting like a generalized force:

γ
∂∆
∂t

= − ∂F
∂∆∗

, γ > 0. (10)

This equation is not gauge invariant, so we should replace it with the corrected
one:

γ
(∂∆

∂t
− 2ie

(
φ +

µ

e

))
= − ∂F

∂∆∗
, (11)

where φ is the scalar potential and µ is the chemical potential.

Dissipation function R, derived in [4], includes the terms due to the time varia-
tion of the order parameter. We should note here that the Joule heating, caused by the
energy dissipation of changing currents and fields, is neglected.

One of the possible forms for GL time-dependent equations, including Maxwell
equations, is as follows [7]:

D−1
( ∂

∂t
+ i

2eψ

h̄

)
∆ +

1
ξ2 (|∆|

2 − 1)∆ +
(∇

i
− 2e

h̄c
A
)2

∆ = 0, (12)
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J = σ
(
−∇ψ− 1

c
∂A
∂t

)
+ Re

[
∆∗
(∇

i
− 2e

h̄c
A
)

∆
] 1

8πλ2 , (13)

ρ =
(ψ− φ)

4πλ2
TF

, (14)

where D is the diffusion constant in normal state; ψ is the chemical potential divided
by electron charge; ∆ is the dimensionless gap, normalized by ∆0 = πk

√
(2(T2

c − T2)),
λTF is the Thomas-Fermi static charge screening lnegth. Thomas-Fermi screening ap-
proximation requires the slow total potential variation, the constant chemical potential
and the low temperature. The coherence length here is ξ = h̄(6D/τs), where τs is the
spin-flip scattering time. The penetration depth is λ = h̄c(8πστs)−1/2/∆0.

Since Gor’kov and Eliashberg, as far as I understand, no significant progress in
simplification of the valid time-dependent GL equation (TDGL) was made. Further
research either dealt with the equations in the form similar to that of (12)-(14), or tried
to improve the accuracy buy adding nonlinear terms, delving into the microscopic
Bogoliubov–de Gennes theory and Green function apparatus (e.g. [4], [8], [9], etc).

Solving the discussed equations for a more or less real situation seemed ex-
tremely difficult or sometimes impossible, but with the progress of computer simu-
lations the abundance of opportunities arose. In the next section we will try to review
some of the most interesting and related to the realistic processes numerical experi-
ments, carried out in the last twenty years.

2.2 Computer simulations

During last twenty years, papers on the simulated superconducting-normal or
normal-superconducting phase transition have kept being published. Interest in this
topic does not seem to drop. Computer performance keeps increasing exponentially
(Moore’s Law), and new problems appear possible to solve, which could not be solved
before.

In the 1990 year paper [10] by F. Liu, M. Mondello and N. Goldenfeld, the 2D
TDGL equations are written in a form of

γ
∂ψ

∂t
= −

[
a + b|ψ|2 + 1

4m

(
ih̄∇+

2e
c

A

)2]
ψ (15)

and

4πσ

c2
∂A
∂t

= −∇× (∇× A)− 2πe
mc

[
ψ∗
(

ih̄∇+
2e
c

A

)
ψ + c.c

]
, (16)

where σ is the normal state conductivity. The imposed calibration is ∇ · A = 0.
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(a) (b)

Figure 3. (a) Meissner state growth in time in type-I sc at T=0. (b) Intervortex spacing for
various G = 1/(2κ) in zero field for type-II sc. [10]

The dynamics of Meissner phase growth is modeled in a type-I superconduc-
tor (Fig. 3 (a)). In type-II superconductor at zero-field the scaling law for the average
intervortex spacing d was found to be violated (Fig. 3 (b)) in some range of Ginzburg-
Landau parameter κ and to tend to logarithmic dependence. In this paper it is ad-
mitted that TDGL equation are valid only for gapless superconductors near Tc, but
it is assumed that they nevertheless give a “semiquantitative description of the pase-
transition kinetics”.

In the same year paper [11] by H. Frahm, S. Ullah and A. Dorsey, the results close
to the previous article are reported. The modeled bulbous superconducting front dy-
namics is shown in Fig. 4 (a) for nucleation regime of external field: only seeds of
radius greater than a given critical one can grow. Simulation for spinodal regime with
unstable normal phase is shown in Fig. 4 (b). Both figures describe type-I supercon-
ductor. The authors observe the analogy to the solid-liquid system.

For type-II superconductor the authors begin with a mixed state regime and a
superconducting seed in a uniform field. Interface grows until one vortex penetra-
tion into the superconducting phase becomes favorable (Fig. 5). After that the slow
triangular lattice formation is demonstrated.

One more interesting study of spatial patterns of order parameter and supercur-
rent in type-II superconductor was reported in [12] only a year later.

Among modern publications we can mention the following: [13], [14] and [15].
They confirm the persisting interest in this topic.
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(a) (b)

Figure 4. Type-I cuperconductor. (a) Nucleation regime, perturbed surface growth. (b) Spin-
odal regime with a leaking order parameter through the flux wall. [11]

Figure 5. One vortex penetration into the type-II superconductor [11].

Figure 6. Penetration of the vortex structure into the superconductor sample with κ = 2 [14].

3 Technological applications

Superconducting phase transition dynamics research suddenly finds itself necessary
in accelerator physics. Superconducting electromagnets are installed along the beam
line of circular accelerators in order to bend the beam path. Superconducting radio
frequency cavities (Fig. 7) are used to accelerate light particles. In both cases super-
conducting materials use is justified by lesser energy losses. The current amplitudes
in magnets are so high, that in case the magnet becomes normal conductor, the Joule
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heating can destroy the whole magnet or at least damage some of its crucial parts. In
SRF cavities the effect of superconducting-normal transition is not that dramatic, but
still the temperature abruptly increases, helium in the surrounding dewar is boiling,
the quenching cavities quality factor drops to zero, causing the loss of all the energy
stored in the resonator and hence the zeroing of the accelerating gradient.

Figure 7. 1.3 GHz SRF TESLA cavity, Fermilab VTS facility

Figure 8. Typical cat-eye de-
fect, Fermilab VTS facility.

In magnets quenching can be controlled by monitor-
ing the current and heat distribution in the system and
protected by different means [16], but still quench prop-
agation is of interest there. In SRF technology [17] it be-
comes crucial, because one has to locate quench origin on
the internal surface of resonator. Usually some major de-
fect in the lattice or impurity (Fig. 8) causes the quench,
and it is possible to improve cavity performance later by
some additional processing. So, quench propagation char-
acteristics can be of significant help to develop a reliable

technique of quench location. Essential parameters in this case are normal zone radius,
temperature dependence, time constant of the process, critical values of temperatures
and oscillating electromagnetic fields inside the cavity. The whole process is compli-
cated by nontrivial thermal conductivity, resistance, and heat capacity dependence on
temperature of real materials, but some straightforward attempts of modeling such a
process were made [18][19] for niobium cavities. No attempts to theoretically analyze
and predict the characteristic parameters were made at all.

Experimental data [20] claim the temperature of the quench epicenter in Nb cav-
ities to be around 100K, when working temperature range is 1.6-2K. Niobium critical
temperature is 9.2K. There exist some experimental techniques of quench locating,
based on the temperature or second sound measurements (e.g. [21], [22], [23]), but
they are far from being reliable and universal.

The problem here, as I see it, is in certain experimental complications, of course,
but also in the lack of interest in condensed matter theory in high energy physicists
and vice versa. Maybe, a simple model will actually do for the quench propagation
dynamics, but since nobody reports their achievements in this area, the simple model
apparently does not describe the process well enough. So, a more accurate model
is asked for. Niobium is a type-II superconductor and operating fields are close to
the critical value [24], so vortex state may influence the macroscopic parameters. The
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combination of time-dependent GL-theory and experimentally measured parameters
of Nb could shed some light on the quench process in SRF cavities. From the other
hand, there are a lot of complications in time-dependent GL equation itself concerning
application temperature range, gapless superconductors, magnetic impurities and os-
cillating field. Anyway, the topic is important for accelerator physics, and, it is hoped,
will draw more attention to itself in the nearest future.

4 Conclusion

The time-dependent simulations in superconductivity is undoubtedly a promising
and fruitful field in spite of its development for more than 70 years. The same can
be said about superconducting phase transitions in particular. Though there is much
uncertainty in time-dependent Ginzburg-Landau theory and still there is no strict so-
lution (and hardly there will ever be), the relatively simple case of TDGL (12-14), in-
troduced by Gork’ov and Eliashberg, still matters and was proven to be valid in a
quite wide range of temperatures, fields and frequencies, at least semiquantitatively.
Nowadays a lot of papers is being published about newly calculated models based on
high-performance computing. The TDGL equations are confirmed in asymptotic be-
havior by classical textbook superconductivity phenomena, which once more confirms
their relative validity.

As it was shown, time-depndent superconducting phase transition simulation
could be of great help not only in fundamental condensed matter physics, but also
in high energy physics. Superconducting quench processes in SRF cavities as well
as in superconducting magnets definitely require some qualified research in order to
improve safety, eliminate excessive expenses and increase efficiency of particle accel-
erators.

Possible further directions of research could be the time-dependent study of or-
der parameter and supercurrent patterns in phase transition in superconductors with
intermediate κ = 1√

2
. Also in the light of recent discovery of so called type 1.5 super-

conductivity, it would be exciting to model pattern formation in magnesium diboride
and in two-band superconductors in general. Though phase transition does not seem
to produce any uncommon vortex structures, TDGL can still be used to model the
behavior of the MgB2 in the slightly extended range.
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