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Introduction 
 The quantum hall effect (QHE) has been one of the richest sources of interesting 
new phenomena to study in condensed matter physics for the past thirty years. Originally 
observed by Klaus von Klitzing in 1980 when he was studying anomalies in the Hall 
resistance of inversion layers, or interfaces between oppositely doped semiconductor 
samples, in strong magnetic fields (Prange and Girvan, 1990). What he unexpectedly 
found late one February night in the lab was that there were plateaus in the Hall 
resistance measured as a function of gate voltage. Not only that, but the behavior was 
surprisingly universal: regardless of the sample type, geometry, or material, the plateaus 
occurred at very particular values. These special values of the Hall resistance are 
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RH =
h
ne2

 

 
where h is Planck’s constant, e is the magnitude of the electron charge, and n is a small 
integer.  

Given this quantization of the Hall resistance by integer values, the phenomenon 
came to be called the Integral Quantum Hall Effect (IQHE). As we will see, it is the two 
dimensional constraint on the electron system in between the different semiconductors 
that leads to the novel physical effects – completely unexpected prior to their 
experimental discovery! It is a small wonder that von Klitzing won a Nobel prize in 1995 
for his pioneering work. Briefly, the IQHE can be explained in terms of non-interacting 
electrons confined to two dimensions where the strong transverse magnetic field causes a 
quantization of the kinetic energy states into degenerate harmonic-oscillator-like states 
called Landau levels (LL), after his theoretical prediction of them many years before. It is 
this energy eigenstate structure, combined with the localization effects of impurities and 
disorder in the samples, that causes the plateaus in the Hall resistance (Prange and 
Girvan, 1990). We shall return to discuss LL in more detail, but we will not go into more 
detail about the explanation of the IQHE. For now, it is useful to note that the integer n is 
actually given by the filling factor, or number of LL fully occupied by electrons. 

Much to everyone’s surprise, just two years later the range of Quantum Hall 
phenomena exploded with the discovery of the Fractional Quantum Hall Effect (FQHE). 
Tsui, Stormer, and Gossard discovered in 1982 a plateau at a Hall resistance of 
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RH = 3h e2 , i.e. they found that the IQHE generalized to 
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RH =
h
"e2

 

 
for ν = 1/3, though many other rational number plateaus were soon to follow. Thus, we 
observe also quantization of the Hall resistance at fractional filling factors – generally 
fractions less than one, meaning the lowest Landau Level (LLL) is only partially filled. 
The IQHE can be explained in terms of non-interacting electrons, but a theoretical 
description of the FQHE cannot neglect such complications. It is important to note that 
though the electrons are confined to a thin region between two semiconductors, and can 
be considered a two-dimensional quantum system, their interactions still use all three 
dimensions and are given by a standard Coulomb repulsion. In principle, we can say all 
there is to say about the microscopic situation by writing a Hamiltonian including all the 
kinetic energies and two-body interactions, but as is often the case, “More is Different.” 
In particular, we cannot perturb from a non-interacting “normal state,” and recover the 
qualitative effects that are observed – we are in a “strongly non-perturbative” regime 
(Jain, 2007). We shall later discuss the explanation of the FQHE in terms of “composite 
fermions,” or electrons attached to quantum vortices, which provide a nice analogy 
between the IQHE and FQHE. 

In this paper, we will be particularly interested in the ν = 5/2 state (Willett et.al., 
1987; see Fig. 1), which has many interesting properties not found in many (if any at all) 
other QHE states. In particular, it is believed to be accurately described by a p-wave 
paired state of composite fermions, and given by a Pfaffian wave function as first guessed 
by Moore and Read (1991): 
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where Pf denotes the Pfaffian, or square root of the determinant, of the matrix enclosed, 
and the zj are the complex coordinates z = x – iy of the electrons (the reason for the sign 
will become apparent later). We used the subscript 1/2 on the wave function, instead of 
5/2, because this actually describes a half-filling of the second LL. The LLL is doubly 
filled by opposite spin electrons, hence the total filling factor is 5/2, but in the ideal case 
the LLL can be considered inert (Jain, 2007). The Pfaffian of an antisymmetric matrix M 
is automatically antisymmetric itself, given by 
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PfMij = A(M12M34KMn"1,n )  
 

where A denotes the antisymmetrization operation.  
This Pfaffian state has interest at a more fundamental level than other FQHE 

states because it is one of the only known natural system in which it is possible to have 
non-abelian anyons – quasiparticle excitations whose statistics differ from the standard 
dualism of bosons/fermions. In two dimensions, particle exchanges turn out to be a 
representation of the braid group instead of the permutation group, due to the topological 
inequivalence of the different possible trajectories – how we exchange particles turns out 
to be as important as the fact that they’ve been exchanged, which is all the permutation 



group tells us. Abelian anyons obey statistics based on a one dimensional unitary 
representation of the braid group, i.e. complex numbers of magnitude one. Abelian 
anyons have statistics given by 
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ei", and hence are more general than fermions and 
bosons, which correspond to the particular cases of φ = π and 0 respectively. Higher 
dimensional representations involve matrices which do not necessarily commute, and 
hence are called non-abelian statistics. These possibilities have not yet been 
experimentally observed, but it is exciting to think that nature could contain such strange 
objects.  

On the technological front, non-abelian anyons are being investigated as a 
possible means of constructing a quantum computer. We mentioned that anyon exchange 
operations form a representation of the braid group, and it is theoretically possible to 
simulate any unitary quantum computation gate to arbitrary accuracy by combining 
different braid operations. This would be implemented by physically exchanging the 
particles, but due to the topological nature of the operation being performed (i.e., 
variations in the trajectories do not matter so long as they are topologically equivalent to 
the braid group elements desired) such computations would be far more fault-tolerant 
than standard quantum computation methods. Such a system of braided non-abelian 
anyons is called a topological quantum computer (TQC).  

Hence, the ν = 5/2 state is a possible physical implementation of a TQC, so it is 
well worth investigating its properties. This paper will take a look at the issue of particle-
hole symmetry. A particle-hole transformation is antiunitary, and corresponds to 
replacing all creation operators with annihilation operators (and vice versa) in the 
Hamiltonian (Lee et. al., 2007). The standard two-body Coulomb interaction, which is the 
only relevant microscopic effect present in QHE systems and hence must underlie the 
myriad emergent phenomena observed, is particle-hole symmetric. On the other hand, the 
Pfaffian state is known to be the exact ground state of a repulsive three-body Hamiltonian 
that breaks particle-hole symmetry (Greiter et. al., 1991). Therefore, the ν = 5/2 state 
must spontaneously break particle-hole symmetry, if the Pfaffian wave function is indeed 
the description of it. This is the subject we shall endeavor to investigate, but first we shall 
review the subjects of Landau levels and fractional quantum hall states. 
 
Landau Levels 
 The concept of Landau levels is at the heart of the QHE, so it is important to 
understand them. The ideal system from which they arise is that of nonrelativistic 
charged particles confined to the x-y plane, interacting with a constant magnetic field 
pointing the z-direction. Following the treatment by Jain, we introduce the vector 
potential 
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A , such that 
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B =" #A = Bˆ z , and therefore write the free electron Hamiltonian 
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We note that with this Hamiltonian the time independent Schrödinger equation 
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H"= E"is invariant under gauge transformations of the form 
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A(r)"A(r) +#$(r)

%(r)"e&ie$(r ) /hc%(r) ,
 

hence we are free to choose a gauge which makes our calculations convenient, since no 
observable quantities can depend on the gauge. 
 We shall choose the symmetric gauge 
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A = B " r 2 , which we can verify returns 
the correct magnetic field upon taking the curl.  This gauge is chosen, instead of the 
simpler Landau gauge 
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A = "Byˆ x , because it is useful for expressing our positions with 
complex coordinates. We define 
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z = x " iy = re"i#  and its complex conjugate 
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z = x + iy = rei" , and then re-express the partial derivatives with respect to x and y in 
terms of z and 
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z in order to rewrite the Hamiltonian in position space as 
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where all quantities are in units of the natural length and energy scales: the magnetic 
length   
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l = hc eB , and the cyclotron frequency   
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h" c = heB mc . Next we define the 
ladder operators 
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in terms of which the Hamiltonian becomes 
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H = a†a +
1
2

 . 

 
Thus we see the problem is equivalent to a harmonic oscillator, since 
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[a,a† ] = [b,b† ] =1, 
and the energy eigenvalues are given by   

! 

En = h" c(n +1 2) where n is the number of 
quanta created by 

! 

a†  acting on the ground state. These quantized energy levels are the 
Landau levels, but they are degenerate since we can also write the angular momentum 
operator 
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L = "ih #
#$

= "h(b†b " a†a) 

 



which commutes with H and has eigenvalue spectrum   
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m = "n,"n +1,K, so we can write 
our complete basis of non-interacting states as  
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n,m =
(b† )m+n

(m + n)!
(a† )n

n!
0 . 

 
Where we had to raise 
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b†  to the (m+n)th power since 

! 

a†  lowers the L eigenvalue. 
Finally, we write the LLL eigenstates 
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which can be derived by solving for the ground state that is annihilated by both a and b, 
then acting on it m times with 

! 

b† . Hence a general LLL state is some superposition of 
these eigenstates, and will be an arbitrary analytic function of z, justifying our sign 
convention earlier.  

In an infinite planar geometry, the degeneracy of each Landau level is infinite, but 
it turns out that the degeneracy per area is a constant (independent of gauge choice, 
which in general affects the eigenstates we will get). In the LLL of the symmetric gauge 
we can see that |ψ0,m|2 is peaked at   

! 

r = 2ml , hence a disk of finite radius R will contain 
(to first order)   

! 

m = R2 /2l2  degenerate states per LL, or a degeneracy per unit area of 
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1/2"l2 . Therefore, since the filling factor is the number of electrons per accessible states 
in a LL, we can write it in terms of the electron density as   

! 

" = 2#l2$ . Then from the 
definition of the magnetic length we can see that increasing the B-field decreases the 
filling factor. 

Now the notion of a filled LL is well-defined – it is when all the degenerate states 
are occupied by electrons. We note that due to the strong magnetic field present, there is 
generally spin polarization, so we fill all m states with identical spin electrons, and arrive 
at a filling factor of   
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" =1,2,K etc., and the total wave function 
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"#  is given by 
antisymmetrizing the m single particle wave functions with a Slater determinant. In 
particular, for a single filled Landau level we have 
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Fractional Quantum Hall Effect and Composite Fermions 
 We have derived the Landau levels of non-interacting electrons in a transverse 
magnetic field, and noted earlier that IQHE states correspond to integer filling factors ν. 
We shall now take this “explanation” of the IQHE as a given, without going into more 
details about the relation between these states and the observed Hall resistance plateaus, 
and explain the analogy made between the IQHE and FQHE. 



 The essential concept (following the treatment of Jain once again) used is that of a 
composite fermion, which is a bound state of an electron and an even number of quantum 
vortices. In this context, “vortex” means a location around which a closed loop changes 
the phase of the wave function by 2π, so e.g. for 
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" # (z1 $ z2)
2 p , each particle “sees” 2p 

vortices on the other. FQHE vortices occur in the wave function, in contrast to the 
occurrence of vortices in the order parameter of a superconductor. Hence, instead of 
representing a magnetic flux tube around which supercurrents circulate, there is no real 
flux associated with a FQHE vortex, and the physical magnetic field is given by the 
external applied field. However, the composite fermions interact with an effective 
magnetic field which is increased/decreased (depending on orientation) from the external 
field by the vortices. 

We now make the analogy between IQHE and FQHE. Starting from a system of 
non-interacting electrons in a 

 

  

! 

"* = 2#l2$ =
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IQHE state, where 
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"0 = hc /e  is the magnetic flux quantum and 
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B* is the external 
magnetic field, we then attach 2p flux quanta (i.e. vortices) to each electron. Next a 
mean-field approximation is made, whereby the flux is spread out to become part of the 
uniform magnetic field, so the composite fermions experience a field 
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B = B*+2p"#0 = ±
"#0
n

+ 2p"#0  

 
so the electron system will be at filling factor 
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" =
#$0
B

=
n

2pn ±1
 

 
and we have fractional quantum hall states! This is a very heuristic description of a 
topological ordering of states that is given in full detail by a Chern-Simons field theory 
(Lopez and Fradkin, 1998). It is important to note that in general the FQHE is understood 
as a topological order,  and not an order of spontaneous symmetry breaking. 
 At this point, we can understand the f = 1/m states first given by Laughlin in 
1983. The Laughlin wave functions are 
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where m = 2p + 1. That is, we have attached 2p vortices to each electron in a single filled 
Landau level. Notice that since the above wave function is analytic in z, it is 



automatically a LLL state. In general, when we start with n > 1, the non-interacting wave 
function Φ will not be analytic, so after “attaching” the vortices by multiplying by the 
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(z j " zk )
2 p  factor (known as a “Jastrow” factor), we will have to project the wave 

function down into the LLL and remove the non-analytic parts. 
 The reader may have noticed already that there is something fishy about the kind 
of fraction given above: it only admits an odd denominator, but we have said we’re 
interested in the 5/2 state which has a decidedly even denominator. However, in the limit 
that 
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n"# , we see that 

! 

f = n /(2pn +1)"1/2 (Halperin, Lee, and Read, 1993). This is 
deceptively simple: first of all, there is no observed FQHE state at f = 1/2; second of all, 
it is not at all clear that we can increase n without limit. For example, in the ninth Landau 
level, there isn’t a stable FQHE state (i.e. for f = 16 + n/(2pn + 1)) (Jain, 2007). We also 
see that 

! 

n"#  implies the effective field 

! 

B*"0 , so instead of Landau-like levels filled 
with composite fermions, we expect a composite-fermion-sea, exactly analogous to the 
standard fermion sea.  

Thus, to have even-denominator fractions, we must perturb this state with weak 
interactions between the composite fermions, which we have so far treated as non-
interacting (do not confuse the interactions between electrons, which lead to the 
composite fermion picture, with interactions between the composite fermions, which by 
virtue of being mapped onto Landau-like levels are assumed to not interact with each 
other). This is exactly what happens for the 5/2 state, where the composite fermions 
undergo p-wave pairing in the half-filled second LL. This can be seen by analogy with 
the BCS wave function for fully polarized electrons (suppressing the symmetric spin part 
of the wave function) 
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"BCS = A[#0(r1,r2)#0(r3,r4 )K#0(rN $1,rN )] 
 

which by comparing to the formula above we can see is a Pfaffian (deGennes, 1989).  
An immediate question this presents is how to get pairing, which requires an 

attractive interaction, out of underlying Coulombic repulsion. However since the pairing 
is between the composite fermions, instead of the electrons, it is theoretically possible to 
get a weak attraction if the vortices (over-)screen out the Coulomb repulsion (Jain, 2007).  
Supporting this view is the fact that experiments have detected composite fermion Fermi 
sea properties at 5/2 after raising the temperature so as to eliminate the FQHE (Willett et. 
al., 2002). Therefore, we can think of there being a composite fermion sea which is 
unstable to pair formation, much like in BCS theory. However, this is not an example of 
superconductivity of composite fermions: the 5/2 state has no off-diagonal long-range 
order (Jain, 2007).  

Even without a microscopic understanding, numerical calculations of the overlap 
between the Pfaffian state and the exact Coulomb ground state provide good evidence 
that the description is correct. For example, depending on how the pseudopotential in the 
Coulomb Hamiltonian is tweaked (i.e. increased or decreased from its real value by some 
overall numerical factor) the ground state overlaps with the Pfaffian state by as much as 
~0.99 (Morf, 1998; see Fig. 2). Despite the numerical evidence, there is as of yet no 
experimental evidence in favor or against identifying the Pfaffian with the 5/2 state. The 
Pfaffian is therefore at the very least a very good model for the 5/2 state, so we should 



seek to understand it as best we can and perhaps find out how to modify it to make it 
more accurate. 
 
Particle-Hole Symmetry Breaking in the ν=5/2 state 
 We have thus far discussed what the QHE is in general, where it arises from, and 
some of the open questions relating to the 5/2 state. We have said already that the 
Pfaffian state is particle-hole asymmetric. This means that there is a particle-hole 
conjugate state, the so-called anti-Pfaffian (Levin et. al., 2007; Lee et. al., 2007). The 
idealized 5/2 state, without any Landau level mixing (i.e. no particle-hole excitations), is 
exactly symmetric, and in this limit the Pfaffian and anti-Pfaffian become degenerate. 
This makes sense: ideally, at half-filling, it should not matter whether we have half-filled 
the second LL, or half-emptied it – the many-body wave function would be the same. 
However, the sorts of three-body interactions of which the Pfaffian is the ground state are 
generated in second-order perturbation theory from LL mixing which breaks this 
symmetry (Levin, 2007). In this case, though, it is not clear whether the Pfaffian or the 
anti-Pfaffian state should be preferred. Is it possible to detect which comes closer to 
describing the experimental aspects of the 5/2 state? 
 It turns out that the two states have qualitatively different edge theories, and thus 
correspond to different universality classes (Levin, 2007). The Pfaffian has two edge 
modes: a clockwise (for B in the positive z-direction) propagating Majorana fermion, and 
a clockwise propagating chiral boson. The anti-Pfaffian has three edge modes: counter 
clockwise propagating Majorana fermions and chiral bosons, along with a clockwise 
chiral boson. The thermal Hall conductance KH (heat conductance under an applied 
temperature gradient) is given, in appropriate units of  

! 

" 2kB
2T /3h , by simply counting 

these modes: for the Pfaffian we get 1/2 + 1 = 3/2 (a half for the fermion, one for the 
boson, both positive for clockwise propagation), while for the anti-Pfaffian we get –1/2 – 
1 + 1 = –1/2. Since thermal conductance is a macroscopic thermodynamic phenomena, 
this difference means the two states belong to different universality classes (Levin, 2007). 
More importantly, such a difference should be experimentally detectable, and could 
decide which state is actually favored by nature (Lee, 2007). That is, we should be able to 
decide whether the 5/2 glass is half-empty or half-full! 
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Fig. 1 – Two signatures of QHE state at 5/2: plateau in Hall resistance, and vanishing 

transverse resistance. Willett et. al., 1987 
 

 
Fig. 2 – Overlap of Coulomb Hamiltonian ground state with Moore-Read Pfaffian state as 

function of pseudopotential 


