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Abstract 

 

A brief introduction of liquid crystals and their phases is provided in this paper. Liquid crystal is 

a state of matter which has intermediate prosperities between liquid and crystalline solid. Its phases 

are characterized by their space and point group symmetry. We'll give a description of the symmetry 

and characteristics of different phase types of liquid crystals. And then talk about their phase 

transition. In particular, we'll talk about some interesting theoretical and experimental results for N-I, 

N-SA and SA-SC transition.  
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1. Introduction of liquid crystal 

 

Homogeneous, isotropic liquid has short-range order but no long-range order. It is 

invariant under arbitrary rotations and translations, thus possesses T(3)×O(3) symmetry. 

On the other hand, crystalline solid has long-range positional and rotational order, 

which results in much lower symmetry. Liquid crystal is a state of matter which has 

symmetry and mechanical properties that are intermediate between those of a crystalline 

solid and an isotropic liquid. Their positional order is either fully or partially lost while 

some degree of orientation order is still maintained. 

   
The liquid crystals can be derived either from the rod-shaped molecules (i.e., one 

axis is much longer than the other two) which are called “calamitics”, or from disc-like 

molecules (i.e. one molecular axis is much shorter than the other two), which are 

referred to as “discotics”. We’ll limit our discussion to calamitics in the rest of this 

paper. Furthermore, Calamitics can generally be divided into two phases, nematic and 

smectic phase.  

  

2. Liquid crystal phases 

 

Nematic phase 

At high temperatures, thermal fluctuations dominate the system. The axes of the 

anisotropic molecules are randomly oriented and their centers of mass are randomly 

distributed. When the isotropic liquid is cooled, the first phase that emerges is the 

nematic phase. The nematic phase is the simplest liquid crystal phase with least order 

and highest symmetry. In this phase, the molecules tend to align along a particular 

direction denote by a unit vector n, called the director, while the molecules’ centers of 

mass are still isotropically distributed (Fig. 3(b)). Therefore the translational symmetry 

T(3) maintains, but the rotational symmetry O(3) is broken and replaced by a uniaxial 

symmetry group D∞h or a biaxial symmetry group D2h. Nematic phases with higher 

rotational symmetry such as hexagonal, cubic and so on are also theoretically possible. 

Smectic phase 

If the temperature continues cooling down, the translational symmetry may lose in 

one dimension, one obtains stacks of two dimensional liquid. Such stratified systems are 

called smectics (Fig. 3(c), (d)). The interlayer spacing of smectics is welled defined, 

which is essentially the rod length. The rods can move like liquid or rotate about one 

axis within each layer. In addition, the interlayer attractions are weak, and there are no 

correlations of the positions of the molecules from one layer to the next.  

Fig. 1 Schematic arrangement of 
molecules in crystalline solid, liquid 
crystal and isotropic liquid respectively 
(by Singh and Dunmur[1],p.2) 

Fig. 2 Calamitics and discotics 

(by Singh and Dunmur[1],p.16) 
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Smectics can be characterized by its periodicity in one direction of space, and its 

point group symmetry. In principle, an infinite number of smectic phases are possible, 

as no point group is forbidden. However, we only know a finite number of smectics, 

indicated as SA, SB, SC...SI. They differ from each other in the orientation of the 

preferred directions of the molecules with respect the layer normal and the distribution 

of the centers of the molecules within the layer. 

(a) The simplest smectic phase is the smectic A (SA) which has symmetry of 

T(2)×D∞. That is, in this phase, the average molecular orientation is perpendicular to the 

liquid layers; within each layer the center of mass of molecules are distributed 

randomly(Fig. 3(c)). Thus the structure may be defined as orientationally ordered fluid 

on which is superimposed a one dimensional density wave. The smectic layer spacing 

can be evaluated by small angle x-ray scattering (SAXS) experimentally.  

(b) When temperature is further decreased, the SA phase will transform in to a phase 

possessing even lower symmetry. The breaking of D symmetry may lead to the 

appearance of tilting of molecules relative to the smectic layers. The phase thus derived 

is called smectic C (SC) which possess the symmetry T(2)×C2h. It has a lower symmetry 

compared to the SA phase. The tilted molecules pick a special direction in the smectic 

plane, i.e., their projections in the xy-plane align along a common direction denoted by 

a unit vector c, called the c-director (Fig. 3(d)), just like the molecules in a nematic,. 

While in SA phase, the distribution of the molecules’ projections in xy-plane is an 

isotropic liquid. 

(c) Apart from what is mentioned above, there are several smectic phases in which 

the molecules inside the layer have effective rotational symmetry around their long axes 

and are arranged in a hexagonal (SB) or pseudo hexagonal (SF, SG, SI, SJ) manner. In a 

SB phase, the molecules are normal to the layer plane, whereas in other phases they are 

tilted. 

  

 

 

Fig. 3 Schematic representation of the 

position and orientation of anisotropic 

molecules in (a) the isotropic, (b) the nematic, 

(c) the smectic-A, and (d) the smectic-C 

phases. (c) and (d) also show the arrangement 

of molecules in the smectic planes in the SA 

and SC phases (by Chaikin and Lubensky[4], 

P.62) 
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3. Nematic-Isotropic phase transition 

 

Experiments show that the transition between nematic phase and isotropic liquid is 

of first order. It is a relatively weak transition thermodynamically compared to 

solid-nematic transition. The heat of transition is only 1kJ/mol. The entropy and volume 

change involved in this transition are much less than the corresponding values for the 

solid-nematic transition [1]. 

A lot of theories have been developed in several directions to describe the nematic 

phase and N-I phase transition. Among them, the most widely used approach is a 

phenomenological model proposed by de Gennes based on the Laudau’s general 

description of phase transition, the so called Laudau-de-Gennes (LDG) theory [7]. 

The basic idea of LDG theory is to expand the Laudau free energy [6] in powers of 

the order parameters and its spatial variations near the phase transition point, and find 

the minima of the free energy with respect to order parameter at each temperature and 

pressure. Let’s now talk about it briefly 

Order parameter 

From previous discussion, we know that different liquid crystal phases are 

characterized by their symmetry. The transition between different phases involves the 

breaking of some symmetry. Therefore, the phase transitions can be described in terms 

of order parameters. In principle, order parameter Q are defined in such a way that 

(a) Q=0, in the more symmetric (less ordered) phase 

(b) Q≠0, in the less symmetric (more ordered)phase 

Good examples are magnetization as order parameter in ferromagnetic- 

paramagnetic transition (see lecture notes). 

Experimental measurements find that the significant difference between the 

isotropic liquid at high temperature and the liquid crystalline phase lies in their 

macroscopic tensor properties. Therefore, we can use the macroscopic properties, such 

as diamagnetic susceptibility, the refractive index, the dielectric permittivity and so on, 

as the tensor order parameters (Here we follow Chaikin and Lubensky[4], P. 39). 

A tensor order parameter can be defined in the following way. Suppose some field h 

is applied to the system, the resulting response A of the system is give by 

 hTA  

where T is a symmetric tensor, i.e.,  TT  , and h and A  represent, 

respectively, the component of h and A in a given coordinate system. T can be 

diagonalized in a properly chosen coordinate system: 
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the elements 
iT  can be expressed as  
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i.e., the tensor T can be expressed as  
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where the tensor Q having elements Q  is identified as the tensor order parameter, 





























1

21

21

3

2
00

0)(
3

1
0

00)(
3

1

Q

QQ

QQ

Q  

In the isotropic phase 0Q 21 Q . In an anisotropic phase of uniaxial symmetry 

only one order parameter 01 Q  (and 02 Q ) is required. A biaxial symmetry requires 

2Q is also not zero. Obviously both of them depend on the temperature. 

Consider a Cartesian coordinate system with basis vectors e . The elements of this 

diagonal representation are Q . We make an arbitrary rotation of Q to a coordinate 

system with basis vectors e to get general expression for the tensor order parameter. 

The elements Q of the tensor Q with respect to new coordinate system are given by 
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This is the general expression of the tensor order parameter for a biaxial phase. In 

uniaxial nematic, the direction of unique axis give by the director n coincide with one of 

the basis vectors of Cartesian coordinate system in which Q is diagonal. Here 3n e or 

3n e ; i.e. 02 Q . Now Q reduces to 
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Here we have used the relation   ))(( eeee . Thus the expression for the tensor 

order parameter Q for a uniaxial nematic is given by )
3

1
(1   nnQQ  

The order parameter 
1Q is temperature dependent and describes the orientational 

order. As a convention, Q1 is usually written as S(T) [2], with  
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The brackets denote a statistical average over an ensemble of molecules with their 

individual long molecular axis deviating from the director n by an angle θi.  

)1cos3(
2

1
)(cos 2

2  P is the Legendre polynomial of the second order. df ),(   

is the probability of finding the molecular axis a within a solid angle  ddd sin  

about the direction ),(  . Because the directions +a and –a are equivalent in the 

nematic bulk, ),(),(   ff . Obviously  0 , and ),( f does not depend 

on . The function )(),(  ff   is normalized: 
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In the isotropic phase with a random distribution of θi, all orientations have equal 

probabilities; hence



4

1
),( f , and results in S=0. For perfectly aligned molecules,

)(
4

1
)( 


 f , thus S=1. The scalar S, first introduced by Tsvetkov [8], can be taken 

as the modulus of the order parameter; it is often referred to as the scalar order 

parameter that describes the degree of orientational order. Experimentally, S can be 

extracted from NMR (Nuclear Magnetic Resonance) data (see [6], P. 43 for details). 

By this definition, the diagonal elements of the tensor order parameter is 

SQyyxx
3

1
Q  and SQzz

3

2
 . 



6 
 

LDG theory 

Various experimental measurements indicate that in the nematic phase, the order 

parameter decreases continuously as the temperature is raised while drops abruptly to 

zero at the NI transition temperature [1]. Near the transition point, the free energy 

density can be written as (here we closely follow the deviation given by Kleman and 

Lavrentovich [2]) 

  QQQQTCQQQTBQQTATpgQTp )(
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where g0(p,T,0)is the free energy for a given temperature and pressure of the state with 

Q=0. The simplest possible form of A(T) is a linear one: )()(A *TTaT  ,a>0, 

Furthermore, we assume that a, B and C are temperature independent positive constants. 

Substitute the order parameter )
3

1
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which should be minimized with respect to S,  
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It has the following solutions near the transition point 
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should be discarded. It corresponds either to an energy maximum, or, at temperatures

)0(T 3

*  ST , to a local minimum which is not achieved.  

The transition temperature Tc and the corresponding value Sc are derived from the 
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There is another important temperature T** below which the solution Snem>0 gives 

a local minimum of the free energy density and the nematic phase is therefore 

metastable (Fig. 4). 

aC

B
Tc

216
T

2
** 

 

When B=0, *** TTTc  , this becomes a second order phase transition, in which 

the order parameter S is continuous at transition point. 

 

Experiments found that S≈0.3 at the transition point, increasing to values of S≈0.6 

far above Tc [9]. Below is a typical experimental figure shows the temperature 

dependence of S. 

 

The above development is physically appealing and mathematically convenient. 

However, the problem associated with this LDG theory is that the coefficients appearing 

in the expansion are phenomenological. They are assumed to be analytic functions of p, 

T, which, in reality, may not be true. Also the dependence of the transition on the 

molecular properties and molecular interactions is not determined in this theory.  

In order to solve these problems, many other works have been proposed. Examples 

are the famous Maier-Saupe theory [10] which attributes the formation of the ordered 

phase to the anisotropic attractive interaction among molecules, the van der Waals type 

theories, as well as Singh and others’ works [1] which are based on the density 

functional approach. We won’t go into much detail here. 

Fig. 4 Free energy density vs 

scalar order parameter (by 

Kleman and Lavrentovich [2]) 

Fig. 5 Typical illustration of the 

temperature dependence of the scalar 

nematic order parameter S for PAA 

(p-azoxyanisole). (Data after Ref. [9]) 
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4. Nematic-Smectic A phase transition 

 

More efforts have been made on developing the theory of NSA transition than any 

other smectic transition. Despite of that, the situation remains very complicated with a 

lot of unsolved questions. In the following analysis, we’ll see that it is somewhat similar 

to the superconducting normal transition. 

We extend the Landau-de Gennes theory for the NI transition to the NSA transition 

as follows (follow [2]). 

Again, we start by defining an order parameter for the smectic A phase. The order 

parameter of the SA phase must have two components: 

(a) A nematic component, with amplitude S and phase n 

In Nematic-Smectic A transition, S reaches its maximum value precisely at the 

transition point. We can assume that the nematic phase is well ordered just above Tc and 

that S is approximately 1. Also, S is almost temperature independent in the smectic 

phase immediately below Tc. 

(b) A component relating to the modulation of matter density along the z-axis 

  )exp(k zki  

where v
d

mk
0

2
 , m is an integer, v is a unit vector normal to the layers, and d0 is the 

smectic layer spacing. Define 
0

0

2

d
q


  as the wave vector. 

Consider a slight deformation of smectic, which is described by a displacement 

field zuu  . The material that was at 'r  is now at r , with urr ' . Hence, the 

density at r  can be written as 

   
  







rqii

urqiurkir
k k

010

010

exp)exp(

)(exp)(exp)(




 

where we have introduced the phase uq  0 . This phase is a degeneracy parameter 

varying in a range ]2,0[  . It describes all possible positions of the smectic phase with 

respect to a reference smectic 0 . Therefore, the smectic order parameter that 

describes the modulation of matter density along z-axis is a complex number: 

 iexp0
 

Let us first consider this order parameter only. The expansion of the free energy 

density is  
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where )( cTTa  ; the positive coefficients  ,  , ||M  and 
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1
 describe the anisotropic rigidity of the smectic phase for the deformation along 

the normal and in the layers. There are no odd terms in the free energy density, so that 

the transition can be second order. The most important feature is the the gradient terms, 

which indicates that   can vary with space.  

The director )1,0,0(n0  may have fluctuations )0,,( yx nnn   , nnn  0 . 

This leads to the fluctuations of  . 

Under simultaneous rotations of the director n and the normal v to the layers, 

Laudau free energy of the smectic phase must be invariant: 

)1,,( yx nnn  , 
















 1,,

y

u

x

u
v  

These variables are regarded as independent here. Under the rotation by a small 

angle 1 , the director tilt n  is equivalent to the displacement of layers 

xnxxu   along the z-axis, which is further equivalent to a phase change

xnxq  0 , so that )exp()exp( 00 xnxiqi    and 
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The free energy density with the correct gradient term is, thus,  

2

0

2

||

42
)(

2

1

z2

1

2






 niq

MM
f

AS 



 



 

The total free energy density is obtained by adding to 
ASf  the deformation of the 

nematic director, i.e. the Frank-Oseen energy: 
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where K1, K2 and K3 are elastic constants of splay, twist, and bend deformations, 

respectively. For small director distortions in the vicinity of the transition, the total 

energy density is  
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de Gennes pointed out that , the total free energy density is analogous to the 

Ginzburg-Landau functional describing a superconductor-normal metal phase transition: 
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with nA . The superconductor’s order parameter   is the wave function of the 

coherent ensemble of Cooper pairs. Therefore, we can expect that the results for N-SA 

transition are similar to that of superconductor-normal metal transition. 

Let’s minimize the total free energy with respect to *  
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This gives two coherence lengths: 
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For T>Tc, these lengths are the sizes of the smectic clusters in the nematic bulk. As, 

T→Tc, the coherence lengths diverge. At T<Tc, these lengths are those along which a 

strong perturbation of the amplitude of the order parameter relaxes.  

Minimize totf  with respect to n  will give us the penetration length of splay, 

twist or bend 
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Many high resolution heat capacity and X-ray studies have been devoted to the 

N-SA transition. Most of the focus has been on the critical exponents. The most 

extensively measured critical exponents are  ，，， || . They are the critical 

exponents of the singular part of the specific heat, the susceptibility, parallel correlation 

length and perpendicular correlation length, respectively. Typical values are 

60.0-45.075.0-57.01.5-1.3 ||   ，，  (see [6], P. 519 for details). Below is 

experimental results got by Davidov and Safinya, et al in 1979 [5]. 
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5. N-SC transition and SA-SC transition 

 

In SC phase, the director is tilted by an angle compared to the SA phase. The tilt of 

an individual molecule can be described by a vector with an amplitude i  and 

azimuthal tilt direction i . The average molecular tilt over an ensemble of molecules 

can be expressed by 









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i

i

i





sin

cos
 

The amplitude of the tiltθ is depends on temperature, pressure and so on and is 

considered to be the order parameter for phase transition. In the low temperature range 

of the SC phase, the typical value ofθ is in the order of 25°- 35°[3]. 

SC materials are generally divided into two groups: those transform to SA phase at 

high temperature, and those transform to nematic or isotropic phase at high temperature. 

The SA-SC transition is (most often) of second order and can be described by a Landau 

theory. The calculation is similar to what we did before. In the second case, a first order 

transition is usually observed, where the order parameter vanishes discontinuously at 

the transition temperature. 

 

Fig. 6  Left: Longitudinal and transverse correlation lengths as function of reduced temperature.  

Right: Susceptibility as a function of reduced temperature, which yields 06.026.1   [5]  

Fig. 7 Typical dependence of the director 

tilt angle on reduced temperature for a 

second order SC*-SA* and a first order 

SC*-N* phase transition. (Taken from 

Dierking[3], P.12) 
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In the SA-SC transition, when temperature decreases, the tilt angle increases from 

θ =0 (SA) to θ >0 (SC), the smectic layer spacing d thus decreases. This can be 

observed by SAXS experiments. From X-ray measurements we can obtain the tilt angle 

by comparing of the layer spacing in SA and SC. 


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










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S

S

d

d
c tanar  

 

6. Conclusion 

 

In this paper, we talked about general types of liquid crystal phases. We use 

Laudau-de-Gennes (LDG) theory to explain N-I, N-SA, N-SC and SA-SC phase 

transitions. Some experimental results are also presented.  

Liquid crystal is a subject with intensive experimental and theoretical studies due to 

its meaning to fundamental physics research as well as its wide application. However, 

many aspects of it still remain to be discovered or solved.  
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Fig. 8 Dependence of the smectic layer 

spacing d on reduced temperature across 

the SA-SC transition, obtained from SAXS 

experiments. (It’s a second order 

transition). (Taken from Dierking[3], P.13) 

 


