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Abstract

Due to the special dimensionality of one-dimensional Fermi system,
Fermi Liquid Theory breaks down and we must find a new way to
solve this problem. Here I will have a brief review of one-dimensional
Luttinger Liquid, and introduce the process of Bosonization for 1-
Dimensional Fermionic system. At the end of this paper, I will discuss
the emergent state of charge density wave (CDW) and spin density
wave (SDW) separation phenomena.

1 Introduction

3-Dimensional Fermi liquid theory is mostly related to a picture of
quasi-particles when we adiabatically switch on interactions, to obtain
particle-hole excitations. These quasi-particles are directly related to
the original fermions. Of course they also obey the Fermi-Dirac Statis-
tics. Based on the free Fermi gas picture, the interaction term: (i) it
renormalizes the free Hamiltonians of the quasi-particles such as the
effective mass, and the thermodynamic properties; (ii) it introduces
new collective modes. The existence of quasi-particles results in a fi-
nite jump of the momentum distribution function n(k) at the Fermi
surface, corresponding to a finite residue of the quasi-particle pole in
the electrons’ Green function.
1-Dimensional Fermi liquids are very special because they keep a Fermi
surface (by definition of the points where the momentum distribution
or its derivatives have singularities) enclosing the same k-space vol-
ume as that of free fermions, in agreement with Luttingers theorem.
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1-Dimensional electrons spontaneously open a gap at the Fermi surface
when they are coupled adiabatically to phonons with wave vector 2kF .
The mean-field theory tells us that there is a charge or spin density
wave instability at some finite temperature for repulsive interactions
implying that there can be no Fermi liquid in 1-Dimension. There
are no fermionic quasi-particles, and their elementary excitations are
rather bosonic collective charge and spin fluctuations dispersing with
different velocities. An incoming electron decays into such charge and
spin excitations which then spatially separate with time (charge-spin
separation). The correlations between these excitations are anoma-
lous and show up as interaction-dependent nonuniversal power-laws
in many physical quantities where those of ordinary metals are char-
acterized by universal (interaction independent) powers.
In this paper I had a brief review on how the 1-Dimensional Fermi sys-
tem comes out, and how spin-charge separation emerges in 1-Dimensional
Fermi system. By using the particle-hole excitation operators, which
is the density operators for Fermions, (the so-called bosons), we can
diagonalize this Hamiltonian. Therefore we can obtain the grounp
velocity for both system of CDW and SDW, and finally find their
difference on velocities, and the two waves seperate.

2 Luttinger Liquid

Before looking at the Luttinger Liquid, we want to have a look at
1-D free Fermion system first. The lattice Hamiltonian for a non-
interacting hopping Fermion system is written as:

Hf = −t
∑
nσ

(
ψ+
nσψn+1σ + h.c.

)
+ µ

∑
nσ

ψ+
nσψnσ (1)

where t is the hopping constant between nearest lattice sites, and µ
is the chemical potential, and σ is the spin degree of freedom. Using
the Fourier Transformation into the momentum space, we can find the
eigenvalue for this Hamiltonian, is

εk = −2t cos ka+ µ (2)

where µ = 0 for kF = π/2a, or, we can simply absorb the chemical
potential µ when expanding around the chemical potential.
The Luttinger Liquid can be derived from the 1-D Hubbard model
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when the above free Fermion system includes an interaction term,

H = Hf +HU = Hf + U
∑
n

ρn↑ρn↓ (3)

for temperature much lower than the Fermi energy, we want to expand
the energy around the Fermi points. By writing the site amplitudes
for right and left moving components, where kF = π

2a

ψnσ = eikFnaψnσ+ + e−ikFnaψnσ− = Rσ(n) + Lσ(n) (4)

the assumption here for left and right moving Fermions is, they are
slow varing in space, and have mean momemtum value of ±kF . There-
fore, we can expand the Fermion field for position (n+1)a at the center
of the position na:

ψn+1σ± = ψnσ± + a∂xψnσ± + ... (5)

plug this term back into Eq.(4), retaining only the first order of a.
Since

exp(ikFa) + exp(−ikFa) = 0

exp(ikFa)− exp(−ikFa) = 2i∑
n

exp(ikFa(2n+ 1)) = 0 (6)

the third equation vanishes because only x = 2nπ suvives in the sum-

mation of
∑
m exp(imx). Taking the notation that a

∑
n →

∫ L/2
−L/2 dx,

ψnσ± =
√
aψσ±(x), now the 1-D free Fermi Hamiltonian is simplified

into

Hf = −h̄vF
∑
σ

∫ L/2

−L/2

[
ψ+
σ+(i∂x)ψσ+ + ψ+

σ−(−i∂x)ψσ−
]
dx (7)

where we define h̄vF = 2at here. Fourier Transform it into the mo-
mentum space,

Hf = h̄vF
∑
σ

∫
kdk

[
ψ+
σ+(k)ψσ+(k)− ψ+

σ−(k)ψσ−(k)
]

(8)

or, equivalently, Luttinger performed a canonical transformation of
the form

ψσ+(k) = bkσ ψσ−(k) = c+
kσ k > 0

ψσ+(k) = c+
kσ ψσ−(k) = bkσ k < 0 (9)
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in the sense of particle-hole transformation. The transformed normal-
ordered free Hamiltonian is written as:

Hf = h̄vF

∫ ∞
−∞
|p|dp

[
b+pσbpσ + c+

pσcpσ
]

(10)

On the other hand, the interaction part of the Hamiltonian can also be
rewrite in momentum space. First let us rewrite the density operator
in momentum space:

ρσ±(k) =

∫ ∞
−∞

dx e−ikx
∫ ∞
−∞

dp

2π

dq

2π
ψ+
σ±(p)ψσ±(q)ei(q−p)x

=

∫ ∞
−∞

dpψ+
σ±(p)ψσ±(p+ k) (11)

From the definition of Eq.(4), we find the relation between ρnσ±(x)
and ρnσ(x):

ρnσ = ψ+
nσψnσ

=
(
e−ikFnaψ+

nσ+ + eikFnaψ+
nσ−

) (
eikFnaψnσ+ + e−ikFnaψnσ−

)
= ψ+

nσ+ψnσ+ + ψ+
nσ−ψnσ−

= ρnσ+ + ρnσ− ⇒ ρσ(k) = ρσ+(k) + ρσ−(k) (12)

where

ρσs(k) =

∫
dpψ+

σs(p+ k)ψσs(p) (13)

The interaction part, if we don’t consider the spin-coupling terms,
could be written as:

Hint =
1

2L

∑
σs

∫
dq

2π
(g4ρσs(q)ρσs(−q) + g2ρσs(q)ρσs̄(−q)) (14)

we can also obtain ρσ±(k) operators in terms of b and c operators.
From our heuristic argument above, suggesting charge density modu-
lations to be the basic excitations of the system, we expect the opera-
tors ρσ±(k) to represent the central degrees of freedom of the theory.
For a Hubbard interaction, this gives

HU =
U

2

∑
σ

∫
dq ρσ(q)ρσ̄(−q)

=
U

2

∑
σ

∫
dq [ρσ+(q) + ρσ−(q)] [ρσ̄+(−q) + ρσ̄−(−q)]

=
U

2

∑
σ,s=±

∫
dq [ρσs(q)ρσ̄s(−q) + ρσs(q)ρσ̄s̄(−q)] (15)
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This is not general; this is just the case for Hubbard interaction. More-
over, due to the book ”Condensed Matter Field Theory” by Ben and
Simons, for a general interaction, the above equation can be written
in the form of:

Hint =
1

2L

∑
σ,s=±

∫
dq [g4ρσs(q)ρσ̄s(−q) + g2ρσs(q)ρσ̄s̄(−q)] (16)

where g4 and g2 gives two coefficients which are not required to be
equal. The commutation relations for the momentum-space density
operators are,[

ρσs(k), ρσ′s′(k
′)
]

= δσσ′δss′
∫
dq
(
ψ+(q + k + k′)ψ(q)− ψ+(q + k′)ψ(q − k)

)
(17)

which is different from the book of ”Condensed Matter Field Theory”
on Page.70 on a minus sign. To make further progress, we must resort
to a (not very restrictive) approximation. Ultimately we will want
to compute some observables involving quantum averages taken on
the ground state of the theory, 〈0|Â|0〉 . This approximation seems
reasonable, since what we are interested is always the system with
large numbers of particles’ collective motion, of order ∼ 1023, the
system, at low temperature, is almost at its ground state, except for
very few of them excited. To simplify the structure of the theory, we
may thus replace the right-hand side of the relation by its ground state
expectation value:[

ρσs(k), ρσ′s′(k
′)
]

≈ L

2π
δσσ′δss′

∫
dq 〈0|ψ+

s (q + k + k′)ψs(q)− ψ+
s (q + k′)ψs(q − k)|0〉

=
L

2π
δσσ′δss′δk,−k′

∫
dq 〈0|ρqs − ρq−k,s|0〉 (18)

At the first glance, it seems the r.h.s. of Eq.(17) vanishes. Due to
a simple shift of the momentum index,

∑
k〈0|ρq|0〉 =

∑
k〈0|ρq−k|0〉.

But, this is too trivial result as we are not expecting. The summation
on momentum, k, tells us that the two terms contributing to the sum
cancel. However, this argument is certainly too trivial. Consider the
upper limit and lower limit of the momentum summation, we find this
argument It ignores the fact that our summation is limited by a cut-
off momentum Λ. Since the shift q → q − k changes the cut-off, the
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argument of course forget this subtlety above. Keep in mind that in
the ground state, all states with momentum k < 0 are occupied (it
is the Fermi sea) while all states with k > 0 are empty. This implies
that,∫
dq 〈0|ρq+ − ρq−k+|0〉 =

L

2π

(∫ 0

−Λ
+

∫ q

0
+

∫ Λ

q

)
dq 〈0|ρq+ − ρq−k+|0〉

=
L

2π

∫ q

0
dq 〈0|ρq+ − ρq−k+|0〉 = −qL

2π∫
dq 〈0|ρq− − ρq−k−|0〉 =

qL

2π
(19)

Therefore Eq.(17) can get into this result,

[
ρσs(k), ρσ′s′(k

′)
]

= −δσσ′δss′δk,−k′
qLs

2π
(20)

Unfortunately the commutation relation of the density function de-
pends on the momentum q. If we can absorb this parameter into the
operators, we can of course obtain the bosonic commutation relation.
Let us define,

bσq =

√
2π

qL
ρσ−(q), b+σq =

√
2π

qL
ρσ−(−q)

bσ−q =

√
2π

qL
ρσ+(−q), b+σ−q =

√
2π

qL
ρσ+(q) (21)

Therefore, the interaction term can be expressed as,

Uint =
1

2π

∑
σ

∑
q>0

q
(
bσq b+σ−q

)( g4 g2

g2 g4

)(
b+σq
bσ−q

)
(22)

This is a good-looking interaction, however, since the free part of the
Hamiltonian is not written in terms of b operators, this problem is
still unsolvable. However, when we recall the idea of the equations of
motion for Heisenberg representation, i.e., i∂0Â = [Â, Ĥ], we plug in
Â = ρσs(q), what we can find is,

[Hf , ρσs(q)]

=

[
h̄vF

∫
dp
∑
σ′s′

s′pψ+
σ′s′(p)ψσ′s′(p),

∫
dk ψ+

σs(k + q)ψσs(k)

]
(23)
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Using the indentity below,

pψ+
p ψpψ

+
k+qψk − pψ

+
k+qψkψ

+
p ψp

= (k + q)ψ+
k+qψkδk+q−p − kψ+

k+qψkδk−p (24)

and plug this back into Eq.(22), we obtain the important relationship,

[Hf , ρσs(q)] = sqvFρσs(q) (25)

This is an exciting result, recall Eq.(19), the intuition tells us that
the free Hamiltonian can be written in operators of ρσs(q)ρσs(−q),
because one operator contraction with ρ gives a constant, to obtain
the other operator in Eq.(24), we just need to add one more operator,
to obtain quadratic operators representing the free Hamiltonian:

Hf =
vF
L

∑
sσ

∫
dq ρσs(q)ρσs(−q) (26)

Now its time to take every term into account. Combining both Eq.(21)
and Eq.(25), we obtain the Hamiltonian in the matrix form as below:

H =
∑
σ

∫ ∞
0

q
(
bσq b+σ−q

)( g4
2π + vF

g2
2π

g2
2π

g4
2π + vF

)(
b+σq
bσ−q

)
dq (27)

This is the process of Bosonization of the Luttinger Liquid. Recall the
interaction term with the form of Hubbard interaction, the difference
from here is just to let g4 = g2.
Diagonalizing this Hamiltonian Eq.(26), we can find the eigenvalues,
i.e., the density operator’s velocity,

vρ =
1

2π

[
(2πvF + g4)2 − g2

2

]1/2
(28)

This is a free theory without spin interaction fermions which was devel-
oped in one dimension making use of the bosonization process. Eq.(27)
showed that the low-energy degrees of freedom were described by hy-
drodynamic charge (i.e. density) fluctuations that propagated with a
linear dispersion. This is the so-called Charge Density Wave’s wave
velocity (CDW), because except for a scaling factor of 2π

qL , ρ opera-
tors (density operators) are equivalant to the b operator in the final
Hamiltonian.
However, we still need to consider the spin-coupling terms, a general
Hamiltonian can be written as: (with q > 0)

H =
∑
αsq

qvF b
+
αsqbαsq +

∑
αα′sq

q

[
g2

2π

(
b+αsqb

+
α′s̄q + h.c.

)
+
g2

2π
b+αsqbα′sq

]
(29)
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Let us introduce operators to create charge ρ and spin σ fluctuations,

bsqρ =
1√
2

(bsq↑ + bsq↓)

bsqσ =
1√
2

(bsq↑ − bsq↓) (30)

combining Eq.(31), Eq.(32) and Eq.(33), we obtain the new Hamilto-
nian after the transformation that,

H =
∑
q>0,s

q

[
vF b

+
sqρbsqρ +

g2

π

(
b+sqρb

+
s̄qρ + h.c.

)
+
g4

π
b+sqρbsqρ

]
+

∑
q>0,s

q
(
vF b

+
sqσbsqσ

)
(31)

Now, we have successfully seperate this Hamiltonian into two inde-
pendent parts, one with the solved charge density Hamiltonian, the
other with the free spin density Hamiltonian. Rewrite this in terms
of matrices,

H =

∫ ∞
0

q
(
bρq b+ρq−

)( g4
π + vF

g2
π

g2
π

g4
π + vF

)(
b+ρq
bρq−

)
dq

2π

+

∫ ∞
0

q
(
bσq b+σq−

)( vF 0
0 vF

)(
b+σq
bσq−

)
dq

2π
(32)

Therefore we can safely reach the goal of the charge density wave
(CDW) velocity and spin density wave (SDW) velocity seperate. This
violates the single-pole assumption at the origin of the Fermi liquid.
Anticipating the meaning of the two poles is clear: charge-spin sepa-
ration.

vc =

[(
vF +

g4

π

)2

−
(
g2

π

)2
]1/2

, vs = vF (33)

Despite the nicety of the electron, and the apparent ubiquity of this
phenomenon, the observation of spincharge separation in one-dimensional
conductors has presented a significant challenge to experimentalists.
The reason is that, the completion of an electrical circuit necessar-
ily requires contact of the quantum wire with bulk leads. The leads
involve a reservoir of electrons with conventional Fermi-liquid charac-
ter. Electrical transport requires the recombination of the collective
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charge (holon) and spin (spinon) degrees of freedom at the contact
to reconstitute physical electrons. It is an exasperating fact that this
reconstitution of the physical electron masks the character of spin-
charge separation. Instead, the phenomenon of spincharge separation
has been inferred indirectly through spectroscopic techniques.
These are the two experimental pictures I find from ”Probing Spin-
Charge Separation in a Tomonaga-Luttinger Liquid” by Y. Jompol,
et al.

Fig.1. (A and B) Color-scale plots of G versus Vdc and B at lattice
temperatures of 1K and 40mK. Black lines (solid and dashed) indicate
the locations of singularities predicted by the noninteracting modelfor
tunneling between the wires and the 2DEG, whereas the green dash-

9



dotted lines indicate the locations of the singularities associated with
the parasitic 2D-2D tunneling. There is an additional abrupt decrease
in G along the line indicated. In addition, G is suppressed at zero bias,
labeled ZBA; this is another sign of interactions. (C) dG/dB (device
A, for Vwg = 0.60V ). The noninteracting parabolae are shown as in
(A) and labeled 1D or 2D to indicate which dispersion is being probed.
The straight red line indicates the locus of the abrupt change in G in-
dicated in (A) and (B) and is a factor of 1.4 steeper than the 1D
parabola at Vdc = 0. This feature clearly moves away from the 1D
parabola. They identify it with the TLL charge excitation (holon),
whereas the 1D parabola tracks the spin excitation (spinon).

Fig.2. Comparison of dG/dB for experiment and theory. (A) For non-
interacting electrons, all features track the noninteracting parabolae.
(B) dG/dB measured at high resolution while sweeping B, for device
B. The red line marks a feature that does not track the noninteracting
parabolae and is absent in (A). Calculation of G(C) and dG/dB (D)
for noninteracting electrons. The dimensionless bias v = eVdc/EF ,
2D=0.12; G is indicated for each curve. The spinon velocity vs = vF
in 1D and the chosen holon velocity vρ = 1.4vF in 1D. Spin and charge
excitations are labeled S and C, respectively. F labels the noninter-
acting 2D dispersion curve. (E) dG/dB as a function of B and v,
showing the same charge feature (C) as in the experiment (B).
Finally, the Hubbard Model is still not fully solved. Actually the
mathematical tools above are insufficient for our problem. We need
Jordan-Wigner Transformation for the one-dimensional Fermi system,
to obatin the kink function. The final result for Hubbard Interaction
turns out to be Sine-Gordan Model. Thus, for the charge density’s
Hamiltoinan, we obtain a free Hamiltonian while for the spin den-
fity’s Hamiltonian, we get a Sine Gordan Model. The free part of
spin density Hamiltonian gives a group velocity which is still different
from that of charge density group velocity. I will go through detail
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deductions for the part in this winter holiday.

3 Conclusion

Due to the breaking down of Fermi Liquid Theory in 3-Dimensional
Fermi system, we found another way to solve this problem, called
the 1-D Fermi system bosonization. On the other hand, we can find
the Jordan-Wigner Transformation has the similar physics idea with
that of bosonization, by introducing kink function. By choosing the
fermions’ density function as the new set of creation-annihilation op-
erators, we finally diagonalize this Hamiltonian, and find two set of
operators – charge density operators and spin density operators have
different group velocities. The charge density wave (CDW) and spin
density wave (SDW) are the emergent state of 1-Dimensional Fermion
system. Since the experiments observed spin-charge separation in the
two pictures above due to the difference on the group velocity, we
conclude that this emergent state exists in 1-Dimensional system.
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