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Abstract

In the Standard Model, it is generally accepted that elementary
particles get their masses via the Higgs mechanism, which involves
a phase transition from the symmetric phase at higher temperatures
(close to the Big Bang) to a phase in which the symmetry has been
spontaneously broken. One of the outstanding problems in particle
physics is to explain the origin of the observed matter-antimatter
asymmetry (baryogenesis) which we observe in today’s universe. In
this term paper, we look at the phase transition associated with the
Higgs mechanism and attempt to explain the above asymmetry us-
ing the same. If the phase transition is “first-order” and rapid, it is
possible to obtain the observed asymmetry from this model.
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1 Introduction

The Standard Model of particle physics, probably the most well-tested the-
ory in physics, was written out in its final form somewhere in the middle
of the 1970’s. The underlying local gauge group of the model is SU(3)c ×
SU(2)L × U(1)Y . Here c refers to the color charge of quarks, L denotes the
left handed fermions, while Y represents the hypercharge (a quantity anal-
ogous to, but not the same as the electric charge). The SU(3)c part of the
symmetry group deals with gluons and their couplings to quarks, thus giving
rise to the field of QCD. In this paper, we will concentrate on the remaining
SU(2)L ×U(1), or the electroweak part of the gauge group, which turns out
to be the relevant part in the discussion of the electroweak phase transition.

Even though the gauge group of the Standard Model is SU(2)L ×U(1)Y ,
we do not observe SU(2) symmetry at everyday energy scales. On the other
hand, we are all familiar with an example of a U(1) gauge field, the electro-
magnetic field. What then, happened to the SU(2) part of the symmetry?
Another issue, which is tied in with the previous one, is that if one constructs
the Standard Model from just fermions and gauge fields, there is no way of
inserting mass terms into the Lagrangian without violating the underlying
symmetry. However, we know that not only do fermions - such as electrons
and quarks - but also certain gauge fields - such as the gluons - have mass. So
how does one make the Standard Model work so that it can describe massive
particles?

Consider another apparent roadblock to the Standard Model, coming
from observations at the largest of length scales. As far out into the Uni-
verse as we can see, it seems that all structures are made out of matter, as
opposed to antimatter. The Standard Model, on the face of it, seems to tell
us that there should be no surplus of matter over antimatter, or vice-versa.
Once again, we seem to be faced with a conflict between the Standard Model
and observation.

The phenomenon of symmetry breaking and phase transitions can help
provide a solution to all the three problems that we have outlined above. The
assumption of spontaneous breaking of the SU(2)L × U(1)Y symmetry to a
U(1) symmetry allows us to formulate a consistent mechanism for particles
to acquire masses. If the associated phase transition is first order and rapid,
then this symmetry breaking can also lead to the large baryon asymmetry
that is observed. In Section 2, we shall formulate the mechanism of sponta-
neous symmetry breaking for the SU(2)L × U(1)Y group. We shall also see
how it gives rise to massive fermions and gauge bosons. In Section 3, we look
at the the conditions required to produce large baryon number asymmetries.
We then look at how electroweak symmetry breaking provides us with the
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correct ingredients for the asymmetry to develop in the early universe, soon
after the Big Bang. Finally, in Section 4, we review the main points of the
paper, and discuss certain further developments in the field.

2 Spontaneous Electroweak Symmetry Break-

ing

As mentioned in Section 1, we will consider the breaking of symmetry in the
SU(2)L ×U(1)Y part of the theory. The relevant Lagrangian can be written
as
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where W a
µν is the field strength tensor of the SU(2)L gauge field W a

µ and τa

are the generators of SU(2) in the fundamental representation. Similarly,
Bµν is the field strength tensor of the U(1)Y Abelian gauge field with hyper-
charge Y . L stands for the left handed fermions, whereas R stands for right
handed fermions. As one can clearly see from the form of the Lagrangian,
the Standard Model has a left-right asymmetry because the right handed
fermions do not couple to the SU(2)L gauge field. The left handed fermions
therefore are doublets of SU(2)L whereas the right handed fermions are sin-
glets. Apart from the fermions, there is also a scalar field φ which is a doublet
of SU(2)L. The scalar field has a polynomial potential V (φ) which we leave
unspecified for the moment. There are also couplings -whose strengths are
given by the parameters λd, λu and λe - which lead to interactions between
the right handed fermion singlets (the up and down quarks), the left handed
fermion doublets and the scalar field. It is important to notice that there
are no explicit mass terms which would have violated the symmetry of the
theory. We have not specified the hypercharge eigenvalues for the fermions
and the scalar field. However, this can be worked out from the fact that the
Lagrangian should be a scalar under both SU(2)L and U(1)Y . Another small
point worth noting is that we have not included right handed neutrinos in
the Lagrangian.

To see how the symmetry of this Lagrangian can be spontaneously bro-
ken, we look at the potential of the scalar field, given by V (φ). We assume,to
the lowest order, that it is a polynomial in φ with coefficients which are only
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constrained by the overall symmetry of the Lagrangian. Therefore, for given
values of coefficients, we can find the minimum of the potential, which gives
us the vacuum of the theory. It should be remembered though, that φ is
a SU(2) doublet and not a number. Hence it is defined by four real num-
bers. Due to symmetry considerations, the first term in the potential must
be quadratic, and we have only even powers of φ at the lowest order. The
coefficient of the highest order term in the potential should be positive so
that we have a potential which is bounded from below.

If we look at the case where all coefficients are positive, we get the triv-
ial vacuum where all components of φ = 0. There cannot be spontaneous
symmetry breaking in this case. However, if we consider a case where the
coefficients can be either positive or negative, we can have a situation where
the minima of the potential lies not at |φ|2 = 0, but at some finite value
of |φ|2. We have one equation and four real parameters. This means that
we are free to choose three of them. This choice is what leads to symmetry
breaking in the system. The choice of the three free parameters determines
the vacuum of the system. Since SU(2) is a continuous symmetry, we have
infinitely many possible vacuua. It is convenient to choose

φvac =

(

0
v

)

. (2)

This vacuum does not respect the SU(2)L or U(1)Y symmetry, but instead
has a new U(1)C symmetry, where C denotes the electromagnetic charge that
we are familiar with. If we now look at the effective Lagrangian after having
substituted φvac into it, we see terms which start resembling the mass terms
of fermions and gauge fields.

If we look at the kinetic term involving φ in Eq. (1), the derivative term
goes away because φvac is a constant in space and time, and only the gauge
couplings remain. The term can be written explicitly as
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The first two terms on the RHS of Eq. (3) are like mass terms for the W1

and W2 gauge bosons, since masses appear as coefficients of quadratic terms
in the Lagrangian. These are the charged W± bosons which appear in high
energy physics. The third term does not yet look a term we can interpret as
a mass. We diagonalize it so that it becomes
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where A = cos θWB+sin θWW3 and Z = − sin θWB+cos θWW3. The θW that
appears in the equation is like a mixing angle and is given by θW = tan−1 g′/g.
We see that a certain combination of W3 and B gives rise to another massive
vector field, the Z boson. However, there is another gauge field Aµ which
remains massless, namely the photon of electromagnetism. So, instead of
four massless gauge fields that we started with, we now have three massive
and one massless gauge fields.

Now, we have to figure out how fermions masses arise from the sponta-
neous symmetry breaking. If we look back at the last line of Eq. (1), we
see the coupling terms of the form −λuq̄Lφ

CuR, −λdq̄LφdR, and −λel̄LφeR.
After spontaneous symmetry breaking, the φ field attains its vacuum expec-
tation value, and the interaction terms now look like muūLuR, mdd̄LdR, and
meēLeR. The masses are then directly proportional to strength of the cou-
plings of various fields to the scalar field φ. These massive fermions are what
observe in experiments.

In this section, we have seen a mechanism whereby gauge fields and
fermions acquire masses without actually breaking the symmetry by hand.
The mechanism involved the introduction of a new scalar field, often called
the Higgs field, which has its own polynomial potential. The minima of this
polynomial determine the vacuua of the theory, and depending on the value
of |φ|2 at the minima we can have symmetry breaking and the generation of
masses.

3 Baryogenesis

3.1 Conditions for baryogenesis

As mentioned in the introduction, observations at all length scales, from
the smallest to the the largest, seem to show that there is a large matter-
antimatter asymmetry in the universe. There seems to be very little anti-
matter present in the universe at today’s energy scales. This asymmetry can
be quantified by a number

η =
nb − nb̄

nγ

, (5)

where nb and nb̄ denote the number of baryons and antibaryons per unit
volume respectively, and nγ denotes the number of photons per unit volume.
Observations show that the value of this parameter should be of the order of
10−10. On the other hand, looking at the Standard Model, there seems no
obvious way in which to get a non-zero number for η unless the asymmetry
already existed at the time of the Big Bang. However, this would violate
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naturalness, and is ruled out as an explanation for the observed asymmetry.
In 1967, Sakharov proposed certain conditions that any theory attempt-

ing to explain the asymmetry must satisfy. These three general conditions
should be satisfied irrespective of the exact mechanism of an individual the-
ory.

Firstly, the mechanism should have a way of violating the baryon number
B, so that an excess of baryons over anti-baryons can be generated. This is
obviously necessary if the mechanism is to explain the non-zero value of η,
starting from η = 0 at the Big Bang.

Secondly, the Sakharov conditions state that the theory should also have
CP violations. Unless the theory violates CP symmetry, then every B num-
ber violating process would have a counterpart in the anti-baryons, and the
asymmetry would get out.

The third and final Sakharov condition is that the theory should provide
for interactions taking place outside thermal equilibrium with the environ-
ment. Even if the theory is CP violating, it will not produce baryon number
asymmetry in the long run if all interactions occur under conditions of local
thermal equilibrium. This is because the theory should be CPT invariant and
unless there is an arrow of time, interactions at thermal equilibrium will not
be able to differentiate between baryons and anti-baryons, thereby washing
out any excess.

A theory satisfying the three conditions above can produce a non-zero
value of η. However, different models will, in general, predict different values
of η depending on their specific mechanism. Therefore, for a theory to be
considered a valid one for the observed baryon number asymmetry, it should
not only satisfy the Sakharov conditions, but also predict a value of η which
is close to experimental observations.

3.2 Baryogenesis from the Electroweak phase transi-

tion

Given the Sakharov conditions that we outlined in Section 3.1, we need to
show that the Standard Model, along with the mechanism of electroweak
phase transition, do indeed provide a model for baryon number asymmetry.
We will discuss the the second Sakharov condition first, because CP violation
in the Standard Model has been seen experimentally, and is therefore well-
established. This CP violation was first observed throughK0-K̄0 mixing. The
violation is caused essentially by the fact that the weak flavor eigenstates are
not the mass eigenstates for quarks. As a result there exists a unitary matrix,
known as the CKM matrix, which allows one to switch from the flavor basis
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to the mass basis. Kobayashi and Masakawa (KM of CKM) famously showed
that for three generations of fundamental particles, there exists one non-zero
phase δ in the matrix which leads to CP violation of the theory. This CP
violation seems to satisfy the second of Sakharov’s criteria. However, it
should be noted that the latest measurements of δ yield a value which is
considered to be too small to account for all the observed baryon number
asymmetry by itself. It seems that one needs to go beyond the Standard
Model to introduce new CP violating terms, which do not interfere with
other measurements, but are large enough to cause the baryon asymmetry.

Next we look at Sakharov’s first criterion - that of processes within the
theory that can lead to baryon number asymmetries. We know that at low
energies, and even at energies probed at colliders today, lepton number and
baryon number are conserved. So, at first glance, it seems as if the Standard
Model does not describe any process in which baryon number is violated.
However, it turns out that the above statements are true only perturbatively,
and there exist non-perturbative processes which do violate baryon number
with in the Standard Model. These processes, involving instantons, are not
important at energy scales which are accessible to us, but are very important
in the early universe, where temperatures and densities were very high. To
understand the origin of these processes, we have to remember that chiral
symmetry is broken at the quantum level, leading to the ABJ anomaly. This
means that even though the currents corresponding to baryon number and
lepton number are conserved at the classical level, they are not conserved at
the quantum level. The equation for the currents then becomes

∂µJB
µ = ∂µJL

µ =
nF

32π2

(

g2W a
µνW̃

aµν − g′2BµνB̃
µν
)

, (6)

where nF counts the number of families in the Standard Model. W̃ aµν =
(1/2)ǫµναβW a

αβ is the dual of the field strength tensor of the SU(2)L field.

The dual of the U(1)Y field strength tensor is similarly defined to be B̃µν .
This immediately tells us that JB

µ − JL
µ is conserved at the quantum level.

At the quantum level, then, the conserved quantity is B − L, and not B or
L individually.

One can write the RHS of Eq. (6) as a total divergence so that
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Since Kµ is not gauge invariant, the integral over all space with vanishing
boundary conditions does not necessarily yield 0 as the result. However, it
does hold true for kµ. Using this fact, we can write down the change in the
baryon number between an initial time ti and a final time tf as

∆B = nF (NCS(tf )−NCS(ti)) = ∆NCS , (10)

where

NCS =
g2

32π2

∫

d3xǫijk
(

W a
ijW
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k −

1

3
gǫabcW

a
i W

b
jW

c
k

)

. (11)

NCS is known as the Chern-Simons number. As pointed out before this is
not a gauge invariant number, though ∆NCS is gauge invariant. We can
see from the definition of the Chern-Simons number that it is not a local
quantity and is a topological charge, different values for which characterize
different vacuua. The baryon number violating processes are those which
change the Chern-Simons number by an integer. Since we have linked baryon
number violating processes to a change in a topological quantity, we can now
understand why these processes do not take place at low energies, and why
they do not show up in perturbative expansions.

The different vacuua, which are the minima of some complicated gauge
potential, will be separated by energy barriers. The solution which gives the
profile of the potential with the lowest energy barriers between successive
vacuua is known as the sphaleron solution, and is used to calculate the tunnel
probabilities between adjacent minima. This specific tunneling process would
then give rise to a situation where the baryon number is violated by 9 (3
generations and 3 colors per generation) and the lepton number is violated
by 3 (3 generations). To estimate the rates of tunneling, and hence the rates
of baryon number violating processes, one has to know the height of the
sphaleron barrier. This value was found to be

Esph =
2MW

αW
B

(

λ

g2

)

, (12)

where αW = g2/4π and B is a constant lying between 1.5 and 2.7 depending
upon the value of λ which measures the Higgs self-coupling. MW is the
temperatures dependent mass of the W -boson. The rate per unit volume of
baryon number violating processes in the phase where electroweak symmetry
is broken was calculated to be

Γsph

V
= κ1

(

MW

αWT

)3

M4
W e−Esph(T )/T , (13)

where κ1 is some numerical constant.
In the unbroken phase, there exist no exact calculations to predict this
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rate. However, by dimensional analysis and numerical simulations, the rate
is expected to be

Γsph

V
= κ2(αWT )4 . (14)

κ2 is some other numerical constant. As expected, the Boltzmann factor
is absent in the unbroken phase, where temperatures are greater than the
sphaleron barrier. At these high temperatures, the rates of these processes
would be significant.

Now that we have seen the existence of baryon number violating pro-
cesses within the Standard Model, we need to see how electroweak symmetry
breaking allows us to satisfy the third and final Sakharov condition - that of
interactions taking place outside thermal equilibrium. First of all, we need
to understand why a phase transition is needed for the universe to go out of
equilibrium. As the Universe cooled and expanded, the rate of expansion of
the universe slowed. The measure of the rate of expansion of the universe is
the Hubble’s constant, H . One can work out what the rate of expansion at
a time just before the the electroweak symmetry was broken and the Higgs
field acquired its vev. One can also calculate the rate of baryon number vio-
lating processes at the same temperature. As we have seen, in the unbroken
phase, these rates are high as they are not suppressed by a Boltzmann factor,
and go as the fourth power of the temperature. The Hubble constant on the
other hand depends quadratically on the temperature. At high temperatures
near the Big Bang, we would expect Γsph >> H . This means that there are
too many interactions for the expansion of the universe to take the system
out equilibrium. We need another mechanism which can do this, and the
electroweak phase transition seems to provide one such mechanism.

For the electroweak phase transition, we have already seen that the vac-
uum expectation value of the Higgs field can be considered as the order
parameter. It goes from 0 in the symmetric phase to some finite value in
the broken phase. As can be seen from Fig. (1), if the phase transition is
first order, the change in the vev is discontinuous, and the two minima are
separated by an energy barrier. On the other hand, if the transition is second
order, the vev changes continuously as we go from above Tc to below Tc, and
there is no energy barrier in this case. The energy barrier will turn out to be
crucial in our arguments, and is the reason why the electroweak phase tran-
sition needs to be discontinuous if it is to successfully explain baryogenesis.

As the universe cools to below the critical temperature at which the phase
transition takes place, bubbles of the true vacuum, which is the broken phase,
starts forming within the sea of the false vacuum, the unbroken phase. The
false vacuum continues to exist below Tc as the transition is first order, just

9



T > Tc

T = Tc

T < Tc

0.5 1.0 1.5 2.0
ÈΦ 2

-2

2

4

6

8

10

12

VHΦL

T > Tc

T = Tc

T < Tc

0.2 0.4 0.6 0.8 1.0 1.2
ÈΦ 2

2

4

6

8

10

VHΦL

Figure 1: The profile of the potential V (φ) for a first order transition on the
left, and for second order transition on the right for various temperatures
above and below Tc. Note that the the position of the minima changes
abruptly at Tc for a first order transition (left panel) and continuously for a
second order one (right panel).

like supercooling in a liquid-vapor transition. Initially the bubbles are small,
and the reduction in the free energy from the bulk term is too small to
compete against the surface tension. However, as the temperature falls, the
bubbles become larger, and they can overcome the surface tension effects and
start growing. Eventually, these bubbles of the true vacuum nucleate and fill
up the entire universe. As these bubbles grow and nucleate, different regions
of the universe pass through the phase boundary between the broken and
the unbroken phase. The transition being discontinuous, the order parame-
ter jumps rapidly across these boundaries. The other fields change rapidly
as well. This is what drives the system away from equilibrium, as the baryon
number violating processes are not fast enough to keep pace with this rapid
change. We see that a first order electroweak phase transition is needed to
drive the system away from equilibrium. For a second order phase transition,
the change of the vev across boundaries is continuous, and therefore would
leave the system in thermal equilibrium.

We have pointed out earlier in Eqs. (13) and (14) that the rates of baryon
number violating processes are very different in the two phases. It is sup-
pressed in the broken phase by a Boltzmann factor, which is not present in
the expression for the rate in the unbroken phase. To achieve a non-zero
value of η, we need a large number of baryon number violating processes
in the unbroken phase, and very few such processes in the broken phase.
This would mean that as different points in the universe move across the
boundary, from the unbroken phase to the broken phase, the baryon number
asymmetry would get frozen. For it to remain frozen, one requires the rate
to fall drastically at that temperature. Using Eq. (12) in Eq. (13), along
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with the fact that MW ∝ gvT , we get

Γsph ∝ e−4πBvT /gT . (15)

All other parameters being fixed, this leads us to the conclusion that for the
baryon number anomaly to get frozen in the broken phase, we should have

VT c

Tc
& 1 , (16)

which is the condition for a strong first order transition.
We have seen in this section how the Standard Model along with the

Higgs mechanism is able to satisfy all of Sakharov’s criteria, and therefore be
a viable model for explaining the baryon number asymmetry in the universe.
We have also seen that in order to so, we need the phase transition to be
strongly first order.

4 Summary and Discussion

In this paper, we saw how symmetry breaking and phase transitions are essen-
tial ingredients of the Standard Model via the Higgs mechanism. These ideas
could also be used to explain the baryon number asymmetry that we observe
in the universe. In Section 2, we saw how this mechanism provides fermions
and gauge bosons with masses, which would otherwise have been forbidden
by symmetry. In section 3, we looked at the conditions which a theory of
baryogenesis must satisfy. While looking for processes within the Standard
Model which satisfy this criteria, we saw an interesting non-perturbative
way in which baryon number violating processes occur within the Standard
Model: by changing the Chern-Simons number, which is a topological charge
associated with the gauge configuration of the SU(2)L field. Later, we saw
that if we are to explain baryogenesis through this phase transition, there
is a constraint on the nature of the phase transition - a strongly first order
phase transition is required.

Though electroweak symmetry breaking offers an elegant solution to the
problem of baryogenesis, the jury is still out as to whether it can work with-
out any modifications to the Standard Model. We have already pointed out
that the only source of CP violation in the Standard Model is the parameter
δ in the CKM matrix. The current bounds on its value from experiments
seem to suggest that it is too small to produce the large baryon number
asymmetry. Another issue with electroweak baryogenesis is that, according
to current understanding, if the phase transition indeed has to be first order,
it is commensurate with a Higgs mass which falls in a region which has been
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ruled out by experiments. However, this may not be correct if one takes into
account higher order loop corrections to the Higgs potential, and is an open
question.

These problems have led people to look at other models for baryogenesis.
Almost all of them require extensions of the Standard Model to include new
particles or symmetries. For example, the models based on Grand Unified
Theories requires one to embed the Standard Model in a higher symmetry
group. Other models based on supersymmetry require the existence of su-
persymmetric counterparts of all knows bosons and fermions. There are also
models which are based on baryogenesis via leptogenesis, and these require
the existence of Majorana fermions. Given current experimental data, it is
not possible to determine which of these theories can be rejected. Hence
this is an open field, where active research is underway, both in terms of
experiments, as well as theoretical models.
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