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Abstract

The Kuramoto model for systems of oscillators, a first-order system
of differential equations used to study systems of phase oscillators, is
a useful tool for the study of synchronization. This model occupies an
essential niche between triviality and reality, being complex enough to
have interesting features and yet admitting solution. In this paper we
discuss the formulation of the model for a finite and infinite number
of oscillators, its applications to physics and neuroscience, and some
recent mathematical developments.

1 Introduction

1.1 Synchronization

The phenomenon of synchronization pervades everyday experience. Some ex-
amples are hardly surprising, like the synchronization of the front and back
wheels of a bicycle, as they are highly coupled. Others, like the momen-
tary synchronization of turn signals in traffic, which aren’t really coupled
at all, don’t really merit investigation. There are examples between these
extremes, however, which are of surprising complexity and beauty. These
examples include the synchronization of fireflies, to circadian rhythms ob-
served in animals, and even the subtle synchronization of the heartbeat to
music. [3][7] The fundamental feature of all of these examples is the presence
of several objects which can each said to be oscillating, and the phenomenon
of some of the objects influencing the oscillations of others. The problem
with a naive viewpoint on this subject is that every situation could poten-
tially merit its own unique description, which would entail a unique analysis
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[4]. While this is productive, it misses the larger point, focusing on differ-
ences rather than similarities, and it does not strive to address the seeming
universality of the phenomenon. In light of this, it is promising to study a
model which exhibits all the basic features of a system in sync, keeps enough
flexibility to describe a wide range of situations, and yet is still tractable
from an analytical perspective.

1.2 A Model

One model which strikes a compelling balance of generality and solvability
was proposed by Kuramoto in 1975, and has the following form:

θ̇i = ωi +
N∑
j=1

Kijf(θj − θi) i = 1...N

To explain the notation a little, each oscillator θi has a preferred frequency
ωi, but is biased away from this by its interaction with other oscillators.
This interaction f is periodic in the difference of the phases of the oscillators
concerned, and is zero if the phases are identical. This leads one to believe
that f is probably a polynomial or power series in terms of sin(θj− θi) which
it can be, but for the sake of simplicity it’s typically taken to be only the
lowest order such term.[3][6]

2 Methods

In considering a large number of oscillators, it is wise to change the coupling
somewhat. First, all of the weights are taken to be equal. This has two
effects, one is that the graph of interactions of the oscillators is complete
(in the sense of graphs), the second is that K

N
can be used to regulate the

strength of coupling in the limit as N →∞. The second modification is that
the oscillators should not interact with each other oscillator individually,
but collectively through their average phase Ψ(t). The resulting differential
equation is

θ̇i = ωi +
K

N
sin(Ψ− θi) i = 1...N

Using this notation, it’s also possible to define an order parameter for the
system. This parameter, r, ranges from 0 to 1 and measures the degree to
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which the system is synchronized. It is defined as

reiΨ =
1

N

N∑
i=1

eiθi

As it happens, it’s possible to simulate a finite number of these oscillators
(even a large number by some accounts), but analysis becomes progressively
more challenging. The approach taken with the Kuramoto oscillator is the
usual one, that of taking the limit N → ∞ with K

N
= C, a constant. If we

do this, we can define the continuum analogue of the order parameter above,
and discuss the oscillator behavior as a field quantity. This does involve a
transition in notation and technique, switching to distribution functions, and
solutions to Fokker-Planck equations as primary investigatory techniques.[6]

In this setup, we can also discuss bulk properties of a system of oscillators
in terms of their phases as given by the order parameter. As the system is
set up to be very general, one would expect that the correct choices of the
coupling parameters could give rise to many kinds of behavior, and indeed
there are examples where the system can undergo transitions of phase of both
the discontinuous (first-order) and continuous (second-order) types. [3] As a
side-note, this order parameter has its advantages and disadvantages. It does
determine the amount of order in some sense. However, if the system were
(for example) to exhibit two populations with different phases, say θ1 = −θ2,
you could cook up a situation wherein the system can be split into halves,
each of which is perfectly synchronized, but the overall synchronization is 0.
[3]. It should also be noted that the question of stability is an extremely hard
one to answer, and the stability of distributions of oscillators wasn’t proven
for some time. Beyond just this question, in a case with an infinite number
of oscillators, the exact distribution of initial conditions matters a great deal.
If there are no peaks, or one peak in the distribution (the simplest possible
examples), the analysis is still extremely technical. [6]

3 Applications

3.1 Chemistry

The Kuramoto model is applicable to many problems in certain branches of
science. Several of these will be discussed below. While these are instruc-
tive, none are as immediately fascinating (or visible) as that of the Belusov-
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Zhabotinski reaction. This oscillating chemical reaction can be modeled with
2 linked oscillators which are perturbed by a random spatial imperfection.
In addition to the figure, the reader may find that several pleasing examples
are readily viewable on youtube.

Figure 1: Development and propagation of spiral waves. Taken from
Zhabotinsky and Zaikin, 1971

3.2 Neuroscience

Neuroscience can be done mathematically with several kinds of models. For
some processes, the Kuramoto model is appropriate. These processes in-
clude those taking place in certain areas of the visual cortex. This type of
application introduces many technical obstacles to mean-field and simulation
calculation both, as the connection is no longer all-to-all. Instead, the overall
network is sparsely connected, but locally it can be very densely connected.
The response of the network can, in this case, be measured in terms of the
number of oscillators having a specific phase at or about a specific time. [3]

Aside from actively modeling the brain, it’s possible to model different
methods by which neurons could hypothetically learn information. One such
example is Hebbian learning, is taken to model learning and memory for-
mation in the Hippocampus. This is accomplished by taking a system of
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Figure 2: Oscillators in this simulation form two synchronized clusters in
densely populated bands, while the uncoupled oscillators remain predomi-
nantly in the envelope in the middle. Taken from [5]

coupled phase oscillators, considering them to fire if their phase crosses a
certain point, and reinforcing or diminishing the connections between neu-
rons if they fire close to each other (diminishing would happen in considering
directed connectivity, and reducing the value of a connection of the connec-
tion is from a to b and b fires before a does). The amount of change is
loosely a “learning rate” and varying this rate can cause different structures
of connectivity to emerge from a network. This example, as influenced by
the learning rate, is subject to phases in much the same way as the original
Kuramoto system.[5]

3.3 Physics

The Kuramoto oscillator model has also found many applications in physics,
some of the most notable ones being the propagation of charge-density waves
in quasi-one-dimensional metals and semiconductors. More specifically, the
depinning transition can be studied by the addition of a term to the oscilla-
tor model which introduces a random pinning angle α, and considering the
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reaction to an applied electric field E, these have the form:

θ̇i = E − h sin(θi − αi) +
N∑
j=1

Kijf(θj − θi) i = 1...N

Another prominent application concerns Josephson junctions, which can
be used as voltage-to-frequency transducers. To achieve a large output power,
the junctions can be combined, just so long as they are synchronized properly.
In fact, junctions connected in series exhibit the all-to-all coupling typical
of the original model. The same is also true of lasers, which have to be
phase-synchronized with one another in order to maximize power output.[3]

4 Recent Developments

There are, of course, more technical questions to be asked. First of all, if a
system has a synchronized state, and is started out of that state, how long
does it take to get there? If the system is perturbed by noise, is there still
synchronization on average?

In answer to the first question, it depends. For certain ranges of coupling
constants, synchronization is never achieved (this is expected, especially for
very small coupling). There is a critical value of the coupling constant,
which can be defined up to some technical points, after which synchronization
happens. Furthermore, if the oscillators are going to synchronize, the will do
so exponentially quickly. [1]

In answer to the latter question, if a system of oscillators manages to
synchronize and is subject to noise below a certain threshold, the system
spends the vast majority of its time near the synchronized state. However, the
system will occasionally undergo a large deviation, wherein one or more of the
oscillators slips, and the system then resettles into a new stable state. This
transit time between stable states is extremely short, and under appropriate
assumptions, does not increase if the number of oscillators is increased.[2]

5 Concluding Remarks

Synchronization is a growing area of research–it will likely remain popular
for some time as this phenomenon so compelling and readily observable in
the world. To study this, the Kuramoto model model has many advantages;
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Figure 3: A simulation of transitions of a stochastic Kuramoto system be-
tween stable states (the exact stable states are given by the small circles).
Taken from [2]

Figure 4: A simulation of 5 oscillators illustrating the relative times spent in
stable configurations and transitioning between them. Taken from [2]

it is used throughout many fields because of it’s tractability, and ease of
simulation. It remains an active area of mathematical research, harboring
unanswered questions including the effects of various network topologies on
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synchronization and stability. And, in the case with an infinite number of
oscillators, the question of the behavior of systems with multimodal distri-
butions is not yet solved completely.
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