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Abstract

Power law scalings are abundant in natural and man-made complex systems, but the presence of a
power law in itself is insufficient to specify the mechanism that generates it. It would be particularly valu-
able to understand the origin of the power law distribution of electrical blackout size versus frequency in
national high-voltage power grids, in order to better moderate blackouts. The concept of self-organized
criticality (SOC), inspired by the critical dynamics of phase transitions, underlies many cascade models
for power grid failures; however, the distinct "highly optimized tolerance" (HOT) mechanism can also
replicate empirical statistics. This essay surveys recent SOC and HOT models to compare and contrast
the two mechanisms in the context of the power grid system.
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1 Motivation: power grid blackouts

Depending on its timing, extent, and duration, an electrical blackout can span the spectrum from minor
nuisance or costly delay to severe emergency. The cause of a particular blackout is often mundane: a tree
branch breaks a transmission line, and the local power grid cannot maintain or reroute power to some region
until repairs are made. Large weather-related blackouts occur in the US on a regular, almost seasonal basis;
one recent example is the so-called Halloween snowstorm of 2011 in New England, where snow took down
leafy branches and left some 3 million people without power for days. Yet some of the largest recorded
blackouts have far less obvious origins: a cascade of failures emenating from a small region in northern
Ohio led to the August 2003 blackout that took out 62 GW over several states for 50 million people.[14]
The details of the long, complicated cascade of events from that localized failure to a blackout of the entire
US Northeast are documented in a Federal report over 200 pages in length.[15]

Figure 1: Extracted with caption from [7]; indicates
blackout power law scaling remains after controlling
for weather-based accidents.

The high-voltage component of the US power
grid alone is an enormous, complicated network
of transmission lines connecting diverse nodes in-
cluding several types of generators and transform-
ers, each with their own nontrivial internal dynam-
ics, interactions, and highly nonlinear behavior (hu-
man operators, circuit breakers, outright failure). A
physicist’s first approximation to such a many-body
problem might involve a picture of a randomized
network of identical nodes with linear interactions;
as the compound pendulum demonstrates, even this
simplification leads to chaotic behavior in response
to small perturbations. An independent-node theory
of such a model might predict that the frequency
of blackouts falls off binomially with blackout size;
in reality, observed blackouts in power grids world-
wide demonstrate power law scaling with size (Fig.
1). The empirical distribution of blackouts has a
“fat tail,” and blackouts on a scale comparable to
the system size, like the August 2003 blackout, can
and do occur with non-negligible frequency, even in response to small perturbations. For a complex system
like the US power grid, the question of why a particular cascade of failures started gives little insight into
the nature of cascades: why they obey power law statistics, and hence how their frequency or severity might
be reduced.

1.1 Power law behavior by nature and design

Apparent power law scaling is pervasive in nature: it is found in coastlines, earthquakes, rainfall, forest fires,
neural networks, and many other areas. In man-made structures, we find power laws in Internet file sizes,
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data compression techniques, city growth rates, and power grid blackout sizes.
A special feature of such systems is that they are scale invariant; given a power law relationship f (x) =

axk, rescaling x → cx has only a proportional effect on f (x): f (cx)→ ackxk ∝ f (x). The system “looks” (via
the function f (x)) identically distributed regardless of the length scale x examined, so long as x is within the
domain in which f (x) behaves as a power law (e.g., for a finite system of size L, x ≤ L). A trivial integer
power law relation might be V ∝ L3; fractal patterns host striking examples of power laws with non-integer
exponents.

In physics, power law correlations generally accompany thermodynamic phase transitions, be it a solid
to liquid or or paramagnetic to ferromagnetic. These transitions are described by sets of critical exponents;
different transitions with the same critical exponents, such as the two transitions just noted, fundamentally
obey the same dynamics and are said to belong to the same universality class.

From our experience with power law scaling at critical points in thermodynamic systems, it is tempting
to view power law behavior in certain natural and manmade events as signs of criticality, signs that complex
systems are balanced on the edge of a phase transition between simple and chaotic dynamics, or relative
stability and system-wide cascades. Given the complexity, noise, and myriad initial conditions inherent in
each of these systems - e.g., continental plate shapes for earthquakes, or forest types for fires - it seems
as if the analogous “critical point” also comprises an attracting set, or dynamic equilibrium, such that the
system exhibits universal dynamics with a consistent critical exponent under a wide variety of conditions.
This concept, known as “self-organized criticality” (SOC) or “edge of chaos” (EOC) dynamics, is a central
theme of much recent research in complex systems and nonlinear dynamics. Studies and simulations of
the power grid from the SOC perspective have been made by Dobson, Carreras, Lynch, and Newman,[6,
8, 7, 5, 4, 9, 11] among others.[20, 18, 23, 16, 12, 17] The sandpile toy model of SOC, along with a more
sophisticated power grid cascade simulation, is presented in Section 2 of this review.

SOC is not, however, the only mechanism that might explain power law scaling in nature and man-
made structures. The ubiquity of power laws may be partly due to the many ways by which they may be
constructed, via a variety of simple, non-critical dynamics. Taking an example from [2], suppose we are
given an exponentially distributed random variable X : P{X = x} = λeλx. Now consider an exponentially
distributed function of X : Y (X) = y0eαX . It follows that

P{Y = y}= P{X = α−1 ln(y/y0)}= λ (eln(y/y0))λ/α = λ
� y

y0

�λ/α
.

Any exponential process whose argument X is in turn exponential, or an exponential interaction between ex-
ponential variables, is liable to yield a power law. There also exist several other means by which statistics can
conspire to produce a power law in the absence of criticality.[Scholarpedia] For a heterogeneous, strongly
interacting power grid with many interacting linear subcomponents, SOC may not be the best explanation.

The leading alternate mechanism put forth to explain power law scaling in certain complex systems is
known as highly optimized tolerance (HOT). According to Carlson and Doyle, who coined the term,

“Unlike SOC or EOC, where the external forces serve only to initiate events, and the mechanism
which gives rise to complexity is essentially self-contained, our mechanism takes into account
the fact that designs are developed and biological systems evolve in a manner which rewards
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successful strategies subject to a specific form of external stimulus. In our case uncertainty plays
the pivotal role in generating a broad distribution of outcomes. We somewhat whimsicially refer
to our mechanism as highly optimized tolerance (HOT), a terminology intended to describe
systems which are designed for high performance in an uncertain environment.”[3]

At first glance, the distinction between HOT and SOC may be unclear. In SOC, the dynamics generally
contain two competing forces: one gradually maximizing an order parameter, and another that switches on
once the order parameter passes the EOC, tending to drive the order parameter back. The order parameter can
be seen as something that is extremized under random perturbations, monotonically increasing up to the cliff-
edge of chaos. In HOT, as discussed in Section 3, external design based on specific knowledge of risk seems
to replace dynamical feedback, but the concept of optimizing some parameter under uncertainty remains.
The goal of this literature review is to present and evaluate SOC and HOT with respect to understanding
power grid complexity, somewhat more broadly than is done in [3], but in more detail than [14].

2 Sand pile model

Figure 2: “Rescaled PDF of energy unserved during
blackouts superimposed on the PDF of the avalanche
size in the running sandpile”; from [7].

In 1988 Bak, Tang, and Wiesenfeld introduced
the prototypical model of self-organized critical-
ity, known as the BTW sand pile in 1 to 3
dimensions.[1] The basic sandpile in two dimen-
sions consists of an integer grid, where each point
is randomly assigned an initial h ∈ [0,4] grains of
sand. At each time step in the simulation, all points
(x,y) for which h(x,y) = 4 collapse, depositing
sand on its nearest neighbors: h(x,y)→ h(x,y)−4,
h(x ± 1,y) → h(x ± 1,y) + 1, and h(x,y ± 1) →
h(x,y±1)+1.

This rule is iterated until all sites have height
h < 4. At the beginning of the next time step,
each point on the grid receives an additional grain
of sand with probability P = P(x,y). The grid has
open boundary conditions so that sand may exit the
system. Alternately, a single grain may be added
at each time step, with a location determined uni-
formly or according to some PDF. Note that this is
a simplified version of the original BTW model, in
that the absolute height at (x,y), rather than local slope, is the determining factor in avalanches. the resulting
dynamic equilibrium after a number of time steps exhibits self-similarity in space and time, notably in the
fractal shapes of the regions experiencing an avalanche in a given time step.

In [7], the authors compare the statistics of a particular sand pile model of the above form with P = P0
and size L = 800 (the authors do not make the dimension clear, even in the referenced paper [19]; it is most
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likely a two-dimensional model). They choose P0 to match the average frequency of outages in the US
power grid, and the avalanche size statistics are gathered once the simulation reaches dynamic equilibrium.
They then rescale the simulated sandpile and empirical power grid probability density functions according
to

P(X) = λF
�X

λ

�
,

where X is the dimensionful event size, λ is a rescaling parameter, and F(X/λ ) is the dimensionless uni-
versal function. In the power law regions of the PDFs, λ would only shift the PDFs vertically on a log-log
plot; the rescaled results are shown in Fig. 2. The correspondence is good, and the authors claim that other
statistical properties and measures of blackout sizes also match well with the sand pile statistics; that said,
not all SOC toy models fit real-world data so precisely,[13] and the authors are sufficiently vague that this
reader is inclined to try to determine how replicable and nontrivial is this correspondence.

The analogy between sand piles and power grids made in [7] might be paraphrased thusly. The grid
exists as a network of nodes and transmission lines that deliver and support certain loadings (points on a
grid with N grains of sand). Over time, the demand on the grid increases gradually (sand is added to the
grid); at some point a component is overloaded (the sand height at a point reaches a critical value), and
distributes its load to its nearest neighbors. In a real power grid, the overload or blackout cascade takes
places in less than a day, whereas relaxation (the reduction of the ground zero sandpile to zero height and
its ability to accept loadings from other avalanches) is not instantaneous, and can take several days. In this
sense, and given the ability of the sand pile simulation to replicate power grid statistics, a power grid might
be in a self-organized critical state.

2.1 The OPA model and blackout mitigation

The sand pile toy model in its simplicity is not presumed to represent actual power grid dynamics. One
prominent SOC-based cascade model for power grid failure propagation is known as the OPA model. The
acronym represents the three institutions involved in developing it: Oak Ridge, PSERC, and University
of Alaska. As described in [10], OPA works from a standard fixed IEEE test network of transmission
lines, loads, and generators; after solving a base case under some simplifying approximations for the power
flow in the system (DC flow, linearized, no losses, uniform voltages), random line outages are inflicted
on the network. With each outage, load is redistributed via linear programming methods (optimization,
essentially) that seek to minimize “load-shedding,” that is reducing the total load applied by the generators
on the network. If a line is overloaded, it has some probability of outaging. The total load shed represents
the power lost or size of the blackout. OPA might be viewed as the next step up from a sandpile model, with
rudimentary circuit behavior, a fixed non-uniform network, and distinct lines and nodes.

Qualitatively, at very low loading, very few initial line outages will cascade into a larger blackout in
OPA and similar models; these models will then demonstrate blackout sizes roughly proportional to the
number of initial outages, and so have an exponential tail for large blackouts. Beyond a critical loading,
the network is overloaded and a single outage is liable to cascade through a large fraction or the entirety of
the network (Fig. 3, left). More generally, these types of models are iterated in time such that after each
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Figure 3: From left to right: demonstration of critical loading, comparison of blackout size to North America
grid data, and the simulated effect of small-blackout mitigation efforts. All simulations are with the OPA
model; on the right, the simulation is on the IEEE 118-bus test network. Figures from [10].

blackout cascade the outaged components are rebuilt with higher load capability, even as the overall load
increases with consumer demand (e.g., the CASCADE model in [10]). With these slow dynamics overlaid
on the fast cascading failure dynamics, this class of models settle in equilibrium near the critical point, and
the OPA model in particular shows power law scaling consistent with North American power grid data (Fig.
3, center).

One feature of the OPA model is that, if one simulates engineering measures to reduce the frequency
of small blackouts by inhibiting all line outages if the number of overloaded lines is sufficiently small, the
frequency of larger blackouts can increase dramatically (Fig. 3, right). The intuitive picture is that of a forest
with overzealous firefighters: small fires are prevented, which increases tree and brush density, which makes
the forest sensitive to larger fires.[6] Another interesting result from a different cascade model on a standard
IEEE test network suggests that the degree to which larger blackouts obey power law statistics, versus an
exponential tail, is related to network entropy: simulations on a more randomly connected network exhibit
a weaker power law tail.[18]

3 Highly optimized tolerance (HOT)

Though SOC paints an elegant, physicist’s picture of power grid dynamics, it is not universally accepted.
As part of their motivation for developing the HOT mechanism, Carlson and Doyle argue (as of 1999) that:

... while power laws are pervasive in complex interconnected systems, criticality is not the
only possible origin of power law distributions. Furthermore, there is little, if any, compelling
evidence which supports other aspects of this picture. In engineering and biology, complex
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systems are almost always intrinsically complicated, and involve a great deal of built in or
evolved structure and redundancy in order to make them behave in a reasonably predictable
fashion in spite of uncertainties in their environments. Domain experts in areas such as biology
and epidemiology, aeronautical and automotive design, forestry and environmental studies, the
Internet, traffic, and power systems, tend to reject the concept of universality, and instead favor
descriptions in which the detailed structure and external conditions are key factors in determin-
ing the performance and reliability of their systems. The complexity in designed systems often
leads to apparently simple, predictable, robust behavior. As a result, designed complexity be-
comes increasingly hidden, so that its role in determining the sensitivities of the system tends
to be underestimated by nonexperts, even those scientifically trained.[3]

To support to their qualitative arguments against the relevance of SOC models to engineered and evolved
complex systems, Carlson and Doyle introduce a class of optimization problems, termed “probability-loss-
resource (PLR)” problems, as simple representations of the HOT mechanism (defined in Section 1).[13]
Essentially, the PLR problem is to minimize an expected cost function J subject to resource constraints:

J =
�

∑ pili|li = f (ri), ∑ri ≤ R
�
,

where i indexes a set of blackout or loss events, the probabilities pi are known from particular expertise and
knowledge of system structure or weak points, ri represents the resources applied to reduce the size of the
loss li, and f (ri) is given a simple form:

fβ (ri) =





−c log(ri), β = 0;
c
β
(r−β

i −1), β > 0.

Figure 4: Figure extracted from [13].

Here β is a measure of how the marginal reduc-
tion in loss scales with applied resources ri, as well
as the dimensionality of the system; this relation-
ship is the root of the power law behavior Carlson
and Doyle extract from the PLR model. That said,
the authors make dimensional arguments in sup-
port of this functional form and particular choices
of β ; β is not considered a totally free parameter
in fitting. With judicious choice of β , they find the
PLR optimization model consistent with a variety
of power law phenomena (Fig. 4).

One key feature of HOT, as represented in
the simple PLR model, that distinguishes it from
SOC is the dependence of power law expo-
nent on dimensionality. In equilibrium critical
phenomena, large collective fluctuations are re-
duced as dimension increases; for example, the
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long-wavelength phonon instability predicted for
crystals of dimension d ≤ 2 vanishes for d >
2. Under the HOT mechanism, increasing sys-
tem dimensionality implies a greater probabil-
ity of large-scale events or fluctuations, whereas
SOC, insofar as it represents equilibrium critical phenomena, would predict the opposite.[13]

3.1 Sandpile with design

Figure 5: Top: structured HOT pattern on 64x64 lat-
tice for centralized Gaussian distribution of sand hit-
ting probabilities; white pixels represent 3 units of
sand, black 0. Bottom: figure with caption extracted
from [3].

The three power law systems just described - data
compression, the early WWW, and forest fire events
- aren’t ideal for comparing SOC against HOT; the
first two lack an intuitive SOC explanation, and the
latter, in the absence of firefighters, relies on the
concept of natural selection to justify HOT. Strong
intuition for both SOC and HOT exist in the sand-
pile model, as it relates more directly to the man-
made electrical power grid.

To make a HOT sandpile, one introduces the el-
ement of design[3]: given a known PDF for where
new sand grains will be deposited, what is the opti-
mal initial arrangement of sand that both maximizes
the amount of sand in the system, and minimizes
the impact of (number of sand grains displaced by)
avalanches? The impact of avalanches is extracted
from ensemble averaging over the initial designed
state, rather than monitoring the dynamic equilib-
rium in SOC. In HOT, the resulting pattern of sand
is intuitive: a region at high risk of receiving new
sand grains is enclosed by an avalanche enclosure,
a simple closed loop of grid points with sand height
h ≤ 2, so that no single avalanche can propagate be-
yond it. If the sand input distribution is uniform,
as in simple SOC models, then the optimal HOT
structure in 2D is a uniform grid of barriers. The re-
sult and some of the author’s commentary is given
in Fig. 5. The authors also note that in HOT, un-
like SOC, the configuration is highly structured and
not at all scale invariant. The yield (or alternately,
avalanche size) is not a function of sand density so
much as the known risk distribution and nature of

8



avalanche breakers, both specific features of a given
complex system. There is also no concept of a crit-
ical point; in fact, both optimal and slightly subop-
timal HOT configurations in a percolation toy model exhibited power law statistics.[3] Intuitively, the HOT
sandpile shows power law scaling in absence of criticality because it is a feature of the optimization process:
while an avalanche is by assumption less likely to hit an unprotected region, its impact is greater when it
does.

3.2 HOT vs. SOC

The HOT sandpile is able to surpass the yield of a SOC sandpile by virtue of one strong assumption: reliable
knowledge of the distribution of sand hitting probabilities on the lattice. In a power grid, this would translate
to understanding which components are most likely to fail, and which failure or accident scenarios are most
likely. This strength is also the greatest weakness of a HOT system: it is hypersensitive to changes in the
hitting probability distribution, in other words, to a flawed design or unanticipated accident. Avalanche
barriers centered around a central area are counterproductive if significant amounts of sand falls near the
lattice edges.

If HOT does give insight into power grid dynamics, the lesson may be that power law scaling in black-
outs is a sign of an attempt to optimize certain system features under anticipated uncertainties with limited
resources, rather than an emergent property from competing growth and cascade dynamics. A HOT model
specific to the power grid, analogous to OPA and similar SOC models, is developed in [21] with apparent
success.

The SOC and HOT mechanisms are not mutually exclusive in a particular model system. For a HOT de-
sign element imposed on an otherwise SOC sandpile model, allowing time evolution and decay of structure
can drive the system back to the dynamic equilibrium near the edge of chaos, albeit after a long transient.[3]
Nor is HOT necessarily optimal over SOC, as the latter does not share the former’s weakness to unexpected
events.

4 Discussion

The distinction between SOC and HOT mechanisms is subtle, yet radical. Both seem to offer the same an-
swer to the non-negligible risk of catastrophic blackouts: they are inevitable or a design feature, respectively.
With such outlooks, blackout management, not prevention, may be the most rewarding investment.[22]

Yet to the extent that we do not fully grasp natural or manmade complex systems, the choice can seem
somewhat philosophical. SOC is an optimization, or at least stabilization, by feedback within the model,
including normally “external” factors like human investment in transmission and generator growth in re-
sponse to blackouts. The critical dynamic is an emergent phenomenon, and long-term changes to the grid
are reflexive and driven by the inexorable economic forces of increasing demand and short-term, decentral-
ized repairs and improvements. HOT represents top-down optimization, a systematic design that pivots on
specific details of the power grid.
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To reiterate, the pragmatic significance in interpreting a complex system in terms of SOC or HOT re-
duces to the need for computationally efficient (even feasible) models to isolate the system’s essential be-
havior, with an eye toward better predicting or controlling it.

To this end, the real question isn’t which type of toy or intermediate model produces the best or most
robust fit to a given power law distribution; as we’ve seen, both HOT and SOC models can yield very close
fits to the same power grid blackout size vs. frequency data sets. Moreover, both HOT and SOC have
intuitive appeal, depending on one’s perspective on how a power grid is designed and improved. In order
to decide between HOT or SOC, our best tools may come from ongoing research into the statistical nature
of SOC beyond power law scaling. For example, the original BTW sandpile model also predicts 1/f noise
in the temporal spacing of events. However, the power grid blackout data is apparently still too sparse, and
covers too short a time span (~15 years), to be definitive on that point, though other temporal correlations
have been studied.[7]

Alongside the ubiquity and stubborn obscurity of observed power laws, we may also note with interest
the variety of our attitudes toward them. In evolution, the HOT mechanism describes power laws as optimal
adaptations, in a sense; in nature, we find beauty in spatial scale invariance and fractals; in financial markets,
we feel wary or opportunistic. Yet in power transmission networks, we would like to suppress power law
behavior completely.
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