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Abstract

Collective surface migration of bacterial cells on a growth medium can lead to

interesting spatiotemporal patterns and dynamical behaviors. Studying the rich

behavior of these swarming colonies can provide insight in how the multicellular

organisms were originally formed. Bacterial swarming is an example of emergent

behavior as a result of interplay between the collective interactions of a population

of bacterial cells, colony growth, and hydrodynamic motions. Several models have

been proposed to describe bacterial swarming some of which can qualitatively

reproduce a variety of colony shapes observed in experiments. In this paper, some

experimental work along with a theoretical model for the mechanism of pattern

formation in bacterial swarming that captures some qualitative and quantitative

aspects of this phenomenon is reviewed.



1 Introduction

Collective surface migration of bacterial cells on a growth medium can lead to in-
teresting spatiotemporal patterns and dynamical behaviors. Bacterial swarming
is a phenomenon emerging as a result of a complex network of interactions from a
broad range of length and energy scales. Through a non-equilibrium process and
a network of reversible interactions, bacterial cells self-assemble in an ordered but
dynamical phase that can only happen with dissipation of energy. Understanding
these dynamical interactions not only provides us with insight into the problem
of bacterial growth, but also will have immediate applications in ecology, agricul-
tural and biomedical sciences. In a broader perspective, however, a mathematical
framework to study the dynamics of a system with a complex network of intera-
tion will have applications in disciplines from population dynamics to social and
economical sciences[1].

Individual bacteria can swim by rotational motion of their flagella. The swarm-
ing motion of the colony is a result of interaction of bacterial cells with the surface
of medium, with each other, and with the fluid motion in addition to individual
swimming motion of each bacterium. Individual bacteria are not motile. There
is a threshold cell density required for cells to move to swarming phase. At this
density, bacterial cells go through a division of labor and act like parts of a mul-
ticellular organism. They differentiate in a swarming phenotype start moving
and dedifferentiate. The differentiated cells are elongated cells with more flagella
grown on their outer membrane. At this level, cells self-assemble to multicellular
packs and form a complex structure as they grow. Near the edges, they form a
monolayer of non-motile cells. Just behind this layer (closer to the center) the
most motile cells move in a several layers. These cells collide with cells on the
edge and they can substitute them or push the edge outward. Closer to the cen-
ter, there are many layers of cells that are less mobile and form three dimensional
structures [1].

The swarming process is very active and too complicated to be modeled in
details. While swarming, individual cells change their phenotype, they regulated
their flagella movement to move away or toward particular chemicals through
chemotaxis, they engage in complicated signaling mechanism for quorum sensing
to reaction to their local population density, they extract fluid from the medium to
regulate the viscosity, and many other active processes that affect the swarming
motion. However, some qualitative information can be extracted from simple
models that can macroscopically describe the emergence of collective behavior
and formation of patterns in these systems. To do so, we need to model the
system with a simpler network consisting of only the interactions relevant to the
emergence of the phenomenon we are interested and a coarse grained description
of the system that averages out the irrelevant details of the process.
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As a simple model, we can start with the sensory pathway of bacteria. It
regulates the bacterial motility which defines a swimming behavior for the cell.
The swimming of the cell causes a fluid flow pattern around the cell and as a
result it feedbacks on the motion of the cell. Given this set of simple interactions,
by taking the continuum limit of macroscopic variables such as velocity field of
bacteria and their density, we can construct a model. Of course the missing loop
in this model is the feedback from other cells and the hydrodynamical forces
created as a collective effect acting on the motion of the cell. The non-linearity
from the cell-cell interactions and fluid-cell interaction are most likely the source
of a lot of interesting phenomena. Notice that in models like this, the chemotaxis
is ignored, and it is replaced by the mechanical tendency of cells moving away
from the populated area [2].

In order to study the behavior of the system under models like this, we need to
understand the nature of each step of interaction in the model. In this paper, I will
attempt to review some experimental work done to show the relevance of different
interactions on models like this, as well as some numerical calculations of simple
models that capture the emergence of interesting phenomena and formation of
wide range of patterns.

2 Methods

The emergence of collective behaviors in swarming and formations of patterns
in growing colonies is a result of an interplay of different levels of interactions
in the system. To understand the emergence of these phenomena, we need to
study the relevance each level of interaction to a particular phenomenon and then
come up with a model with the relevant interactions. Since these interactions
happen at different levels, different experimental techniques are used to study
each interaction. In the following section I review some experiments done in this
area followed by a model that can produce a phase diagram of pattern formation
in growing bacterial colonies as well as some collective dynamical behavior in the
growth process.

2.1 Experimental Work

One of the most elementary interactions in bacterial swarming is the swimming
of individual cells by rotational movement of their flagella. The feedback of the
flow resulted from this interaction on the swimming cell is a potentially important
interaction. In the experimental work done by Drescher et al. , the velocity
field is measured directly. In this study, the feedback from the hydrodynamics
found to be an important factor in very short range interactions, but totally
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Figure 1: The mutant MNS185 on the left and the wild Proteus mirabilis on the
right. The mutation changes the shape of bacteria so that they cannot align.[4].

dominated by the effect of intrinsic stochasticity of swimming process at length
scales larger than a few microns. Therefore, even in the high density colonies
that this interaction can be considered important, the asymptotic solutions to
hydrodynamical models are irrelevant [3].

Cell-cell interaction is another factor to be considered. The alignment swarm-
ers is one of the collective phenomena for which the cell-cell interaction becomes
relevant. It is hypothesized that packing of bacteria with complementary shapes
can be an origin of this alignment. In an experiment, Hay et al. used a trans-
poson mutant, MNS185, to change the shape of Proteus mirabilis. As the result
these cell were unable to align [4]. Figure 1 compares the shape of the mutants
with the wild type. Also scanning electron microscopy (SEM) and Tunneling
electron microscopy (TEM) images have shown the formation flagellar bundles
between neighboring cells that contribute to formation of structures which is an-
other example of cell-cell interaction. Reversal of flagellar motor is found to be
responsible for the bundling/unbundling process [5].

Wetness of the surface and concentration of nutrients are important factors
in determining the dynamics of swarming and formation of patterns which is
an indication of importance of cell-surface interaction [1]. In harder plates, the
dynamics is diffusion limited and fractal boundaries are observed. Flower like
shapes, circular growth, and formation of branching patterns are observed in
softer mediums. Interesting collective dynamical behavior such as jets and whirls
are also common in softer plates [2].

Tracking algorithms are used in studying the velocity field of swarming cells.
The largest correlation length and fastest moving cells are observed near the
moving front the colony. Swimming cells undergo curvilinear translation and
form vortices. They go through cycles of forming groups and dissipating and
reforming groups [6]. Another interesting experiment is done showing that the
swarming of the bacteria on soap film (which can simulate the two dimensional
migration of bacteria across the surface of the growth medium) can lead to super
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diffusive movement of micron size beads suspending in the film [7].

2.2 Modeling and Numerical Simulation

In this section I briefly discuss the model presented by Lega et al. to model
bacterial swarming[8]. In this model, the authors used a system of four couple
differential equations each describing the evolution of one macroscopic variable.
In the absence of chemotaxis, swarming bacteria can be modeled as a complex two
phase flow which consists of bacterial particles and the fluid. The first equation
is the a diffusion reaction equation describing the evolution of nutrient concen-
tration S

∂S

∂t
= RS(S,N,W ) +DS∇2S, (2.1)

where RS is the rate of consumption of nutrients. Notice that the advection
term is neglected in this model. Continuity equation can be modified to include
reaction diffusion and advection terms to model the concentration of water (W )

∂W

∂t
+∇ · (Wv) = RW (S,N,W ) +∇ · (DW∇W )−∇ · (DN∇N), (2.2)

where v is the velocity field of the complex fluid, and N is the density of bacterial
particles. The divergence term in the right hand side of the equation (2.2) comes
from the fact that substituting v for vW in continuity equation needs a correction
that is proportional to the divergence of diffusive flux which is replaced by its
Fick’s law equivalent. The last term comes from the assumption that the net
diffusive mass flux is zero, and therefore, the flux of water is negative the flux of
bacterial particles. A similar equation can be written for the density of bacterial
particles

∂N

∂t
+∇ · (Nv) = RN(S,N,W ) +∇ · (DN∇N). (2.3)

Conservation of momentum can be written for each phase separately. Not
only the total velocity field v can be calculated from vW and vN , but also writing
separate equations gives us the opportunity to enter the force that the bacteria
exert on the water phase and its reaction into the equations.

∂

∂t

(
QvQ

)
+∇ ·

(
QvQvQ

)
= ∇ ·TQ + FQ +RQv

Q (2.4)

In this equation,Q can be either N or W. The stress tensor T can be written as the
sum of a pressure term and a shear stress that is µQ∇2vQ+λQ∇

(
∇ · vQ

)
. Notice

that we can neglect the second term for water phase because of incompressibility
assumption.

The force term includes the drag force between phases which is proportional to
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Figure 2: Emergence of branching pattern in a numerical calculation from the
reaction diffusion model. The final distributions of S, N , and W are shown in
the left. The colors in the middle picture represent the velocity field. The right
picture shows the front boundry of moving bacteria[9].

their relative velocity, the force between agar gel and the phase, and the mechan-
ical force of flagella on the water that helps the bacteria swim and its reaction.
In principle the force of flagella should be calculated from the hydrodynamical
models for flagellar motor. However, in this model, the authors decided to replace
this term with a coarse grained average over the each bacterial contribution which
results in a random force field. This is consistent with the experimental observa-
tion that intrinsic stocasticity of swimming process of bacterial cells dominates
the hydrodynamical effects in distances as short as a few microns [3].

The next step is to complete the set of equations by finding the dependence of
the coefficients in our differential equations to the variables N , S, and W . The
reaction rates, RS, RW , and RN , the diffusion coefficients DS, DW , and DN , and
finally the pressure term in the stress tensor all vary with N , S, and W . It is
this dependence that makes these equations differential equations highly coupled.
The authors, at this step, chose the simplest form of N , S, and W dependence
for each variable phenomenologically.

Figure 3: Experimental picture of Bacillus subtilis coloniy growing in an agar
plate forming a branching pattern [10].
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The numerical solution of this model shows emergence of interesting patterns
varying in shape depending on the initial condition [9]. All the numerical sim-
ulation are done with initial N being a symmetric Gaussian function positioned
at the center of the plate with periodic boundary conditions. The result shows
that the velocity field can favor or hinder the development of branching on the
boundary depending on the initial values of W and S [2]. Figure 2 shows an
example of outcome of this simulation. This simulation produces a variety of
different patterns observed in experiment. As an example, a similar pattern as
Figure 2 is observed in an experiment done on Bacillus subtilis colonies on an
agar plate shown in Figure 3[10].

3 Results and Discussion

Experimental work has shown the emergence of patterns on agar plates during the
growth phase of bacterial colonies. Harder plates are diffusion limited and tend to
form fractal boundaries while flower shapes, circular growth, and branching be-
havior has been observed on the softer mediums the colonies. Dynamical patterns
such as whirls and jets have been also observed in the softer mediums. Swimming
cells undergo curvilinear translation and form vortices. They go through cycles
of forming groups and dissipating. The movement of these cells is shown to be
more correlated where they are most motile [6]. Since individual bacteria are not
motile, it is established that swarming is a collective behavior. In fact there is
threshold cell density above which swarming emerges[1].

Effects of different levels of interaction on the emergent properties of growing
colonies have been experimentally proven. The effect of water content and surface
properties of the growth medium on the shape of growing boundary shows the
importance of cell-surface interaction. SEM and TEM images of shows the cell-
cell interaction through formation of flagellar bundles between neighboring cells
[5]. The effect of packing of complementary cells on alignment is shown through
mutation of cells to irregular shapes [4]. Feedback of hydrodynamics on indi-
vidual cells is also studied experimentally and is shown to have effects in highly
concentrated colonies [3]. The missing work in this area may be to study the
effect of hydrodynamical feedback on motion of non-isolated cells. Also, track-
ing techniques can be used to collect enough data on velocity fields of growing
colonies to study their scaling laws.

The numerical simulation of the reaction diffusion model has been successful
to produce a wide range of patterns observed in experiment [8, 2, 9].The breaking
of rotational symmetry of the system in this model is a result of instability in
the front boundary of reaction diffusion equation with non-linear terms. This
symmetry breaking results in formation of interesting pattern and sometimes
circular spots with high density of bacteria. These results seem to depend only
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on initial concentration of nutrients and water. Figure 4 shows the phase diagram
of this model. According to this phase diagram branching happens at high water
concentrations and low nutrient concentrations.

A more careful analysis of the results of this simulation shows that this model
qualitatively predicts some dynamical collective behavior of these colonies such
as emergence of whirls and jets observed in experiments. These jets and whirls
are observed in different scales. Since in two dimensions, even in relatively small
Reynolds numbers compared to turbulence regime, at least a partial cascade of
energy transfer can be observed, it raises the question that whether these jets and
whirls can be linked to the turbulence problem. The analysis of energy spectrum
the velocity field can be the next step to answer this question.

Since the functional form of a lot of relevant coefficients are chosen phenomeno-
logically, we can only expect that these simulations result in the same qualitative
aspects of behaviors of colonies, and quantitative results can be obtained only
with models with lots of free parameters that are measured experimentally that
is only useful for particular bacterial colonies. However, it is still interesting that
even the simplest choices of these functional forms captures all the ingredients

Figure 4: The phase diagram calculated numerically based the reaction diffusion
model. The phase diagram of pattern formed from the growth of bacterial culture
depends on intial concentration of nutriants and water[9].
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to explain the formation of some of these collective behaviors. This robustness
suggests that some of the collective phenomena observed in these systems may
be universal and independent of details of the system. A more detail analysis is
yet to be done to identify these universal variables.
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