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The slime mold Physarum plasmodium exhibits some remarkable behavior for

a single celled organism. Slime molds can optimize their overall structure to dis-

tribute nutrients within themselves in the most efficient manner; essentially solving

the Steiner tree problem. In order to minimize the transport distance of nutrients

slime molds form tubular networks with shortest total length [1, 3, 7]. Slime molds

have been suggested as a good model for studying the transition from single celled

organisms to multicellular organisms [4]. This paper will review some current models

for how these networks form in slime molds and how people have begun to use these

organisms as unconventional computers.
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I. INTRODUCTION

In this paper I will discuss Physarum plasmodium and review various models
describing its behavior. The slime mold Physarum plasmodium is a single celled
organism with multiple nuclei. Despite being single celled, the slime mold can
attain a large size (on the order of 10 to 30 cm across) and is clearly visible with
the unaided eye. Physarum plasmodium creates networks that have been used
by various authors as unconventional computers. Recently, Andrew Adamatzky
showed that it is possible to use Physarum plasmodium to implement an Uspen-
sky machine[2]. Additionally, the networks that Physarum plasmodium creates
are robust, have relatively short total length, and have good interconnectivity.
Nakagaki and others have taken inspiration from physarum plasmodium to design
networks that could be used in real life applications such as power grids, train
systems, road networks, and Internet networks.[1] Physarum plasmodium creates
these networks with no central command, instead these networks emerge.

The slime mold Physarum polycephalum, also known as the true slime mold
exhibits three main phases during its life cycle. It has a vegetative phase called
Physarum plasmodium, a dried up hibernation phase called sclerotium, and a
fructification phase call sporangia. See Figure 1. This paper will mainly discuss
Physarum plasmodium. The Physarum plasmodium looks like a yellowish irreg-
ular blob, it grows outward in a thin film and after a sufficient time develops a
network of protoplasmic tubes. When multiple food sources are present Physarum
plasmodium will grow a network connecting the food sources.

FIG. 1: Three major phases in the life cycle of Physarum. The top left shows the
pasmodium, top right sclerotium, and the bottom picture shows sporangia. This
figure is taken from reference [2]

The Physarum plasmodium exhibits a contraction cycle with a time scale of
two minutes [8]. The tubes connecting the slime mold to food sources vary in
diameter dynamically based on the flux of nutrients passing threw them. The
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plasmodium consists of an outer layer called the ectoplasm and an inner layer called
endoplasma. The endoplasma can experience protoplasmic streaming. It has been
proposed that the protoplasmic streaming modulates long range pattern formation
and the outer ectoplasm dictates short range pattern formation[5]. We will later
discuss a reaction diffusion equation that models these two layers separately[5].

The sclerotium phase occurs when Physarum becomes dehydrated. The
Physarum plasmodium will dry up into a hard brownish-yellow lump. When the
sclerotium is put back into a moist environment it will revert back to the plas-
modium. If the Physarum plasmodium is exposed to environmental stress such as
light, it will change into the sporangia phase. In this phase it grows a stalk with
a globule top from which it will release spores. [2]

The Physarum plasmodium phase is perhaps the most interesting phase to ex-
amine because it forms networks. Networks are found everywhere from the Inter-
net to our transportation systems. Recently there have been some major failures
of some networks because these networks lacked sufficient robustness to withstand
various perturbations. These failures lead to situations such as blackouts in power
grids and traffic on our road system. Conventional networks are often planned in
order to minimize total cost. Since cost is proportional total length, most network
architects attempt to minimize network length. Networks with minimum length
are called minimum spanning trees. Minimum spanning trees are often not as
robust and average length of inter-node travel is long. Physarum balances these
three factors much better than a minimum spanning tree. It does this by adding
extra edges to its network. Though these edges increase the total length this effect
is counterbalanced by the improvement of robustness and the decrease in average
travel distance between nodes. We therefore see that Physarum can be used as
a model to build more robust networks and networks with shorter travel time
between nodes.
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FIG. 2: Physarum growing in a pot. This figure is taken from reference [2]

Physarum plasmodium is also interesting in that it is cheap and easy to grow.
In fact, if you are lucky you can find Physarum plasmodium in a damp forest for
free. Physarum plasmodium requires very little maintenance. Slime molds grow
on porous material such as paper towels and napkins. Traditionally slime molds
are fed with oak flakes. The relative ease of acquiring and maintaining a Physarum
plasmodium makes it an ideal organism for nontraditional computing.

II. EXPERIMENTS AND MODELS

A. Maze Experiment

One of the first experiments to highlight Physarum plasmodium’s computing
power was conducted by Toshiyuki Nakagaki[3]. In this experiment Nakagaki
demonstrated that a Physarum plasmodium can find the shortest path in a maze.
The slime mold was cut up into chunks and distributed throughout the maze. Food
sources were placed at the beginning and end of the maze. Physarum plasmodium
initially expanded linking up all its parts to create one organism that spanned
the entire maze. As time progressed, the plasmodium contracted from dead ends
leaving only the shortest or nearly the shortest path between the two food sources
linked. Near food sources the plasmodium had a higher contraction frequency
and plasmodial tubes parallel to this periodic contraction were reinforced. [3]
In this particular maze there were multiple branches that the Physarum could
choose. In one case, one path was 22% shorter than the other; in this situation
the plasmodium always picked the shorter path. In another case where the two
path lengths differed by 2% tubes formed in equal amounts in both branches. This
shows that Physarum plasmodium will attempt to pick the shortest path but has
some fluctuations in how it does so.

FIG. 3: Physarum plasmodium solving a maze. This figure is taken from reference
[3]

B. Tokyo Railway Experiment

Another experiment conducted by Toshiyuki Nakagaki involved placing food
at nodes in a transportation network and letting Physarum grow outward from
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a central hub and examining the resulting network[1]. For this particular experi-
ment they used Physarum to simulate the Tokyo railway system. The experiment
consisted of 36 food sources placed in such a way as to represent cities in the
Tokyo area. Initially the Physarum expanded out in a uniform way but as it came
upon food sources it refined its network to thick tubes carrying the majority of the
nutrients. Toshiyuki Nakagaki characterized these networks by calculating their
total length, fault tolerance (robustness), and average minimum distance between
food sources. He normalized all these results to that of a minimum spanning tree.
The results he found for Physarum plasmodium were total length: 1.75± 0.30 as
compared to the real train network value of 1.8. The mean minimum distance
between nodes was 0.85± 0.04 for the plasmodium and .85 for the train network.
He also characterized the fault tolerance for plasmodium by finding the percent-
age of the time that deleting an edge would isolate one part of the network. He
found that the fault tolerance for plasmoidum was 14%± 4% and 4% for the rail
network.[1] Thus we see that the plasmodium did just as well as human engineers
in designing a network for transportation and distribution.

FIG. 4: This time series of photographs shows how Physarum plasmodium grows
outward from “Tokyo” slowly colonizing other cities ie food sources. Each panel
is 17cm in width. This figure is taken from reference [1]
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C. Phenomenological Model of Tokyo Experiment

Nagakaki came up with a phenomenologically inspired model of Physarum plas-
modium. As was noted earlier, when the plasmodium grows it first grows outward
in a thin film, essential its conducting foraging or exploration. Once the plasmod-
ium has found a food sources it gradual increases the size of the tubes connecting
the food and its main body. All other tubes slowly die out. The same idea is now
used in a mathematical model. First tessellate all of space with a fine network
of tubes of radius r. Now construct a feedback loop such that tubes with higher
rates of flow will become thicker and all other tubes will become thinner. Suppose
the pressure at nodes i and j are pi and pj and that the nodes are connected by
length Lij and radius rij. Also assume flow is laminar and thus follows the Hagen-
Poiseuille equation for flux through a cylindrical tube. The flux Qij is proportional
to the pressure difference, the conductivity Dij = πr4η, and inversely proportional
to the length of the tube.

Qij =
πr4(pi − pj)

8ηLij
=
Dij(pi − pj)

Lij
(1)

The plasmodium adapts the size of the tubes based on flow. Thus the conduc-
tivity of a tube can be modeled by the following differential equation:

dDij

dt
= f(|Qij|)−Dij =

|Qij|γ

(1 + |Qij|γ)
−Dij (2)

The first term represents growth in response to amount of flow and the second term
is a constant rate of shrinkage. Thus in the absence of flow a tube will disappear.
A similar model to the one currently being presented was considered by Bonifaci
but he changed this equation to

dDij

dt
= |Qij| − Dij. In the case considered by

Bonifaci he proved that this choice leads to convergence to a minimum spanning
tree [7].

Finally we note that current is conserved at each node. What goes in must
come out: ∑

j

Qij = 0 (3)

At each time step two food nodes are chosen at random; one to act as source I0
and the other one to act as a sink −I0. By selecting the proper combination of
parameters I0 and γ it is possible to get a network close to that formed by the
slime mold or one closer to the actual rail network. A choice of I0 = 2.0 and
γ = 1.8 gives networks similar to those created by Physarum.
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FIG. 5: Results from fluid model of network growth in Physarum plasmodium.
Initially all edges have equal strength but as time progresses the most used edges
gain in weight while the least used edges shrink. This figure is taken from [1]

D. Reaction Diffusion Model

In this section I will briefly review a bottom up approach proposed by Yamada
et al using reaction diffusion equations to model the propagation of slime molds.[5].
As mentioned earlier, slime molds consist of two parts; an endoplasma and an
ectoplasma. The ectoplasma is where the contractions occur. Thus there must
be some sort of the chemical oscillations in the ectoplasma that serve as clock for
these contractions (These chemical oscillations could be in Ca or in ATP). The
endoplasma equation includes the effects of streaming. Let h be the thickness
of the endoplasma and ~v be the average endoplasma velocity. Let ugel be the
chemical components in the ectoplasma and usol be the chemical components of
the endoplasma. Let D be the various diffusion constants and F be the reaction
kinetics.

∂h

∂t
+ ~∇ · (h~v) = 0

∂ugel
∂t

= Fgel(h,u) + ~∇ · (Dgel
~∇ugel)

∂usol
∂t

+ ~v · ~∇usol = Fsol(h,u) +
1

h
~∇ · (Dsol

~∇usol) (4)

After considering low Reynolds number flow and ignoring sol-gel conversion,
it is possible to expand the inter-cellular pressure about the homogeneous static
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state. Using these simplifications it is possible to rewrite the previous equations
4 as a reaction diffusion advection equation

∂u

∂t
+M~∇u · ~∇u = F(u;µ) +D~∇2u (5)

Here F is reaction kinetics, M is a tensor of advection current coefficients caused
by the endoplasmic flow, and D is a matrix of diffusion constants.

By analyzing these equations it is possible with weak nonlinear analysis to
find that the envelope obeys the complex Ginzburg-Landau equation. [5]. Also
these equations model a self-determined flow. Further analysis also gives evidence
that neighboring oscillators become in step with one another and thus indicates
that phase difference in contraction must be a important mechanism in pattern
formation in Physarum plasmodium [5].

III. CONCLUSION

Of the models presented, the simple phenomenological model is perhaps the
easiest to understand and has powerful results. By varying the parameters I0 and
γ it is possible to produce networks which range in properties from extremely
fault resistant and interconnected to minimum spanning trees. This simple phe-
nomenological model can explain how Physarum plasmodium can create such so-
phisticated networks with a simple feedback loop mechanism. The algorithm as
presented already encapsulates a lot of Physarum plasmodium’s behaviors but it
still has room for improvment. The algorithm could be changed so tessellation
happens incrementally (in a more evelotiunary process) slowly growing outward
from a central node as would happen in real life. The model would still retain its
ability to refine an exhisting mesh but it would also be able to explore and find new
food sources in the absence of a prexisting network. Additionally, I think instead
of making the total amount of nutrients in the network constant, the network itself
should consume nutrients (ie when it is creating new paths) and all food sources
should act as sources. The emergence of networks is a truly remarkable feature of
Physarum plasmodium.
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