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Abstract

Reaction-Diffusion systems are important in the field of non-equilibrium phenomena
with relevance to biological and synthetic pattern formation. While homogenous dis-
tribution of chemicals was always believed to be a stable state, the symmetry-breaking
treatment by Turing on such systems in 1951 showed pattern formation could be more
stable in certain cases. This paper reviews the treatment by Turing and the subsequent
evidences for and against its application.

1 Introduction

1.1 Reaction Diffusion System

Reaction diffusion (RD) systems are characterized, in this article, as chemical systems with
two active components that react with other components, and with different diffusion coeffi-
cient. Due to limitations in this paper, generalized systems with more components will not
be discussed. Specifically, the concentration u1(r) and u2(r) are governed by the following
master equations [1], 

∂u1

∂t
= r1(u1, u2) + D1∇2u1

∂u2

∂t
= r2(u1, u2) + D2∇2u2

(1)

(2)

where the following assumptions are made,

(i) The reaction terms, r1 and r2, are assumed to be a function of present and local
concentration ui only (i = 1, 2), but not explicitly on space and time.

(ii) the diffusion coefficient Di do not explicitly depend on space and time. (Clearly, when
ri ≡ 0 then both equations are diffusion equations.)
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These assumptions are justified when there is no pre-pattern in the system [1], apart from
the assumption that ri is a function of ui only. It was a practical consideration that such
assumption was difficult to hold for closed system, since chemical reactions often involves
more than two components, and also catalysts would affect the reaction rates [1]. Therefore,
the dependence of solution on boundary not only originates from the fact that Equation
(1) and (2) are coupled partial differential equations. The validity of these equation itself
introduced considerable experimental difficulties, which will be addressed in this paper [11].
It should be noted that such assumption is often valid only in open systems [11].

In equilibrium, u1 and u2 are homogeneous in space and time, then the master equations
become r1 = r2 = 0. With further knowledge in r1 and r2, in principle the homogeneous
solution ui(r) = Ui can be found.

The aim of this paper is to explore symmetry breaking in RD systems beyond equilibrium
thermodynamics. It was shown by Alan Turing in 1951 [2] that homogeneous solution may
be, surprisingly, unstable subject to spatially periodic perturbation. Hence, even without
pre-pattern, Turing patterns (periodic patterns from RD system) are possible in RD system.

Before introducing the classical treatment by Alan Turing, the motivation of studying
such system and some background information will be presented.

1.2 Implication on pattern formation

The possibility of pattern formation without pre-pattern is important in both understanding
in natural-occurring patterns and synthetic patterns.

Firstly, the pattern formation of biological beings, including fingerprints, strips on zebra
and skin patterns on fishes, were not well quantitatively understood [3]. RD systems has
been speculated to be an accurate model for such patterns, because the strips or the spots
on the skins are not determined by structures underneath [4]. In fact, there are experiments
aiming at using RD model to predict perturbation on animal skin by laser ablation [5], as
shown in Fig. 1.
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Figure 1: Time evolution of recovering of strips on zebra fish. The upper series (A to D)
showed the regeneration of an actual zebra fish after laser ablation. The lower series (E to
H) showed results from simulation. Adapted from [5]

However, it should be noted that the biological community remained conservative towards
applying simplistic model such as Turing’s treatment on complicated biological systems.
Also, supporting literature was limited and justification was difficult.

Secondly, pattern formation is also of great importance in microstructure engineering.
Popular deposition methods, in both industry and research, include sputtering and lithogra-
phy [6]. In order to deposit desired structure on substrates, masks are often used to control
to arrival sites modifying agent. With spontaneous pattern formation from RD system, it
is possible to reduce complications such as diffraction and splashing from masks, and thus
to achieve higher accuracy [7]. Also, the sensitivity of pattern formation to initial condition
and environmental factors may be used in sensing application [7] and cellular engineering
[8]. These advantages may be applied to different classes of devices such as cameras and
antioxidant detection [7].

2 Turing Patterns

In 1951, Alan Turing published his only paper on biological pattern formation and opened
the door to the investigations thereafter [1]. In the original paper [2], Turing analyzed the
possible cases from Equation (1) and (2) for a simplified scenario. Instead of field equations,
Turing discretized the system with N sites in one dimension. It was done to simplify the
computation and it can treated as a circle of N cells in which reaction may take place, and
intracellular exchange of chemical was possible [2]. Here the Turing’s linear stability analysis
will be studied with continuous coordinates x instead.
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2.1 Linear stability analysis

In order to investigate whether uniform distribution was stable, Turing assumed the solution
to be ui(x) = Ui for all x. Then, small perturbation in ũi was introduced such that ui =
Ui + ũi(x). Then ri can be expanded in first order, with ri(U1, U2) = 0, as follow,

ri(u1, u2) = ri1ũ1 + ri2ũ2 (3)

Now with the convention above, the linearized master equations read [1],

∂ũ

∂t
= Rũ + D

∂2ũ

∂x2
(4)

with ũ =

(
ũ1

ũ2

)
, R =

(
r11 r12
r21 r22

)
, D =

(
D1 0
0 D2

)
.

Assuming the perturbations are harmonic in space, the spatial variation was assumed
to be eiqx. Then, to allow this perturbation to grow, diminish, or oscillate, the temporal
variation as assumed to be ekqt. Now the real component of kq, <(kq) represents time
evolution of the amplitude of the perturbation. If <(kq) < 0, then the perturbation diminish
with time and the system is then referred as linearly stable. On the other hand, if <(kq) > 0,
then perturbation will grow with time, at least when the linear approximation (Equation
(3)) is valid. Therefore, it is crucial to find out the sign of <(kq) for different q. In principle
this is straight forward since Equation (4) is linear, therefore differential operators become
arithmetic multiplication. Requiring non-trivial solutions give

det(R−Dq2 − kqI) = 0 (5)

After some algebra, the condition for existence of finite q with positive <(kq) and =(kq) =
0 is [1]

D1r22 + D2r11 > 2
√

D1D2(r11r22 − r12r21) > 0 (6)

Note that, when q 6= 0 this is called Turing instability or Turing bifurcation.

2.2 Diffusion-induced instability

There is a specific type of instability that require non-zero Di [9]. In order to choose such
instability, Equation (5) with D=0 can be used to solve for <(kq) < 0 (stable solution). It
can be shown that

r11 + r22 < 0 (7)

Requiring both Equation (6) (Existence of instability) and Equation (7) (Stability with-
out diffusion) to be true, r11 and r22 must have opposite signs [1]. Without loss of generality,

from here it is assumed that r11 > 0 and r22 < 0. The allowed signs for R are

(
+ −
+ −

)
and
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(
+ +
− −

)
[10]. In these cases, component 1 in the system is called activator, as the linear

response of increased u1 is positive. On the other hand, component 2 is called inhibitor in
the literature [1]. The necessary condition for diffusion-induced instability is [1],

D2

D1

>
−r22
r11

(8)

2.3 Activator-inhibitor systems

One of the triumph of Turing’s paper was the possibility for fluctuations to spontaneously
break symmetry in uniform equilibrium state [3]. In this case, Inequality (8) was simple
enough such that physical interpretation was possible.

Figure 2: Schematic diagram (from b to f) of time evolution of activator-inhibitor system.
Solid and dashed line represents the concentration of activator and inhibitor respectively.

Note that in this case R =

(
+ +
− −

)
. Adapted and extracted from [4]

In the figure above, a localized increase in activator resulted in increases in both compo-
nents. Then, with condition (8), the inhibitor diffused faster and created a localized decrease
around. Then such behaviour continues to establish a fluctuation in finite q. This is the core
insight of Turing’s analysis on RD system, that ”local activation with long-range inhibition”
[1] could lead to symmetry breaking patterns. Then, one of crucial question left was how
exactly could experimentalist verify the analysis above. While results from experiments will
be discussed in later sections, in below the subtle difficulties will be evaluated first.

2.4 Experimental Limitations

Although the analysis seemed promising to give spontaneous Turing patterns in many sys-
tems with two active components, only after about 40 years did experimentalists succeed in
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observing Turing patterns in chlorite-iodide-malonic acid (CIMA) reaction [11]. The diffi-
culties arise not only from condition (8), but also the master equation itself, reflected by the
limited validity of assumption (i) at the beginning of the paper.

2.4.1 Supply of inactive chemical

It was assumed from Equation (1) and (2) that ri are functions of concentration of active
components u1 and u2 only. In reality, of course activators can not simultaneously increase
both u1 and u2, as depicted in Figure (2), without consuming other chemicals. Therefore,
continuous supply of inactive chemicals were needed [12], as depicted by Figure (3).

Figure 3: Experimental transport system to supply chemicals. Adapted and extracted from
[11]

2.4.2 Limited difference in diffusivity

On the other hand, finding suitable chemical to satisfy condition (8) was not straightforward,
as −r22

r11
may exceed 10 in general [1], and mobile ions with colour usually do not differ in

diffusivity as much. In fact, the diffusivity ratio D2

D1
was only 1.07 in the CIMA experiment

[12]. However, when starch was added to the solution, it binds with activator and slowed
down its diffusion, render the effective diffusivity ratio much higher than usual.

2.5 Pattern selections and wave instability

The linear response analysis from Turing could not reveal the dynamics of pattern selection
because Equation (4) would not be valid soon after deviation from uniform state. Therefore,
concrete analysis with functional form of ri(u1, u2) are needed to solve the problem of pattern
selection. Some popular choice of nonlinear system, such as the Brusselator, is given by [13],{

r1(u1, u2) = a− (b + 1)u1 + u2
1u2

r2(u1, u2) = bu1 − u2
1u2

(9)
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One could have followed the analysis above and the corresponding q for this system.
Furthermore, with Equation (9), numerical integration is possible such that the dynamics
of pattern selection can be studied. Due to length constraints such technical detail will be
discussed here.

Also, Turing patterns are not the only possibility for symmetry breaking stable states.
One could have chosen to tune parameters in ri such that <(kq) > 0 but =(kq) 6= 0 at q = 0.
This is then called Hopf instability, or bifurcation. As a result, the concentrations u1 and
u2 remain uniform at a fixed time, but oscillate with time. It can be viewed as a symmetry
breaking phenomena in temporal dimension but the spatial symmetry remained unbroken.
Another studied instability, wave instability in literature generally refers the traveling wave
solution.

3 Progress after Turing’s work

3.1 Progress in realization of Turing patterns in chemical system

As stated before, direct observation of Turing patterns are first recorded in 1990 in CIMA
system. Other than actual chemical systems, computer simulations was also instrumental
to understanding of RD systems. Figure (4) shows possible patterns from simulations and
only relatively simple patterns such as strips and hexagonal geometries were found [14].

Figure 4: Square lattice formed by strips in orthogonal directions. Adapted and extracted
from [14]

In order to generate complex patterns, illumination may be used to externally force the
CIMA solution. This is because the reactions are sensitive to light [14]. It was known that, if
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the illumination was modulated in time, then CIMA system would behave as stirred system,
not allowing spatial variance. On the other hand, spatial periodic masks could be used to
generate complex patterns [14].

Figure 5: Strip patterns with spot inside. These patterns were possible with spatially mod-
ulated masks. Adapted and extracted from [14]

3.2 Progress in identifying Turing patterns in biological system

As stated at the beginning of this paper, one of the motivation of studying pattern formation
is to understand how biological pattern is possible without pre-pattern. Of course, even when
simulations with particular value of parameter reproduce some known biological patterns, it
is not a direct evidence that RD equations are responsible for such patterns [3].

In fact, biologists community had question for years that how could complex biological
system be modeled by simple mathematical equations [3]. However, recently it is possible to
provide stronger evidence for RD system by predicting dynamics of biological patterns, as
depicted by Figure 1, by higher computational capacity. On the other hand, using genetic
techniques, it is now possible to study directly the dynamics of molecules by fluorescence
particles [5].

3.3 Progress in theoretical works

3.3.1 Cross diffusion

In Equation (1) and (2), the diffusion was assumed to be independent of the other compo-
nents. However, ion interactions and excluded volume effect may induce cross diffusion, in
which a gradient in concentration of one component would induce flux of the other one [15].
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It was equivalent to adding a ∇ · (D21∇u1) term to Equation (1) (similarly for Equation
(2)). It was shown that even a relatively small value of Dij (i 6= j), the pattern formation
dynamics could still be affected [15].

3.3.2 Interactions between Turing and Hopf instabilities

In earlier section, the calculation for Turing instability had been explicitly carried out. In
principle, one could also solve for Hopf instability in similar manner. In fact, at the vicinity
of Hopf instability, the oscillation is governed by complex Ginzburg-Landau equation [16],
which also governs the order parameter of superconductor in equilibrium. In fact, there was
experimental efforts in finding the parameters in Ginzburg Landau Equation [17].

When the parameters in ri changes, the RD system is then unstable to different per-
turbations. Some recent theoretical works focused on the behaviour of systems when the
parameters were near both instability. It was shown to be possible to form more complex
patterns with interaction between instabilities [18].

4 Summary

In this paper, the master equation for studying reaction diffusion systems (Equation (1)
and (2)) and its importance on pattern formation was introduced. Then the influential
treatment by Turing was introduced by linear stability analysis. It was shown that Turing
patterns are diffusion-induced instability, with the condition of ”local activation with long-
range inhibition” [1].

However, to study dynamics away from uniform states, such as pattern dynamics and
pattern selections, tools beyond stability analysis have to be used. They are particularly
crucial to settle disputes in applying RD system to explain pattern formation in nature.
Also, recent theoretical progress allowed more complex patterns by considering additional
terms or interactions between instabilities.
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