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Abstract

The origin of bosons and fermions is a fundamental problem in
physics. However, in some low dimensional condensed matter system,
the bosons and fermions can be an emergent quasi-particle in some
interacting system. The interaction here can changes the exclusion
statistics of the particles in the original system. Another interesting
emergent phenomenon is the fractionalization in these low dimensional
system which is composed by particles with integer charges. I will
discuss these emergent phenomenon in fractional hall liquid and some
one dimensional systems in a unified picture.
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Physicists are like Alchemists. With some basic principles and materials
they can create some new materials and even a whole universe. These phe-
nomena are emergent, in the sense that they may be totally different and
unrelated with the original system. In Fig.(1), there are four photos for four
different emergent phenomena. Fig.1(a) is a trivial example. There are some
bright spots on the black background. These bright spot can possibly be
generated by different light sources: light bulks, matches or even the distant
stars. We cannot distinguish which is the correct light sources until we come
close to them and find out that they are fireflies.

We know that water may be the most popular material on the world.
You can find it everywhere. However, it can be very dangerous some times.
The second photo in Fig.1 shows the shock wave on the sea coast. Different
from the sound wave, the shock wave is explained by a non-linear transport
equation.

ut + uux = 0 (1)

The energy stored in the shock wave is really powerfully and can be used
for surfing. It is fun and dangerous, I once jumped into the shock wave
in Fig.1(b) when it hit the sea coast and totally lost my mind for three
seconds. The third photo is the ripples on the icicle. At first, the surface of
the icicle is smooth, a small perturbation in the flow of water on the surface
will create ripple. In nature, the wavelength for the ripple is determined by
the heat transport properties of the water flowing on the ice and roughly a
constant which is about 1cm. The ripple on the icicle moves on the reverse
direction of the growth of icicle and the wavelength can be tuned by changing
the water supply which has been proved in some experiments[1]. The two
phenomena in Fig.2(b) and (c) belong to the non-equilibrium systems and
are still open questions now. The following discussion will focus on some
equilibrium systems, which are much simple to deal with.

The last photo in Fig.(1) is the star trail where the stars rotating around
the north celestial pole and forms some closed loops. These closed loops form
a pattern on a two dimensional manifold and have the same structure as the
lowest landau level in a symmetric gauge. We will discuss the related physics
in this paper. However, before discussing this two dimensional emergent
phenomenon, let’s first review some one dimensional interacting systems.

Consider a model with N bosons on a ring of circumference L. If there
is no interaction between the bosons, the ground state will condensate to
a ki = 0 state, where ki is the momentum for each particle. We then can
add short-range repulsive interaction between the bosons. For simplicity, we
consider zero-point interaction potential, the Hamiltonian looks like this

H =
∫

[−Ψ†(x)∂2xΨ(x) + gΨ†(x)Ψ†(x)Ψ(x)Ψ(x)] (2)
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Figure 1: (a) Fireflies at Crystal lake park at Urbana in the summer of
this year. (b) Shock wave at Waimea Bay of Oahu island in the last
winter. (c) Icicle on the roof over the backyard entrance, taken at last
winter. (d) Star trail Over Vienna. This photo is taken from this web-
site:http://homepage.univie.ac.at/peter.wienerroither/indexe.htm
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The equation of motion for this Hamiltonian is

i∂tΨ = −∂2xΨ + 2gΨ†ΨΨ (3)

This model is called Lieb-Liniger model[2]. In the first-quantized language,
the Hamiltonian has this form:

H =
∑
i

P 2
i + g

∑
i<j

δ(xi − xj) (4)

We make the ansatz that the wavefunction can be written like this:

Ψ(x1, ...xN) =
∑
P

Ape
∑

n
ikP (n)xn (5)

for the order x1 < x2 < ... < xN , where the P represents all the possible
permutation of the quasi-momentum k. The coefficients A(P ) and A(P ′)
are related by a pure phase shift in the permutation process, which can be
decomposed into a product of two particle collision on a line. Notice that in
1d, after the two particle collision process, the momentums can only remain
the same or exchange with each other due to the dimensional restriction.
Thus the permutation and collision has the same physical meaning. For
instance, if we consider the collision between particle 1 and 2, the phase shift
is:

A(P ) =
k1 − k2 + ig

k1 − k2 − ig
A(P ′) (6)

The total phase shift of a particle after it collides with all the other particle
on the ring must satisfy the following equation if we consider the periodic
boundary condition:

eiknL =
∏
m 6=n

kn − km + ig

kn − km − ig
(7)

Taking the logarithm, we get:

kn =
2πIn
L
−

∑
m

θ(kn − km) (8)

The above equation in fact is Bethe equation [3], where Ii takes value from
1 to N , θ(kn − km) is the phase shift

θ(kn − km) = 2arctan(
kn − km

g
) (9)

Notice that when g = 0, there is no interaction between bosons, θ(kn −
km) = 2π, the quasi-momentum kn = 0, it represents a ground state for
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bosons. When g =∞, the particle becomes hard-core boson, θ(kn−km) = 0,
the quasi-momentum kn = 2πIn

L
, this is very similar to the free fermion.

Thus, we can get an important conclusion: The interaction will change the
statistics between the particles, which is decided by the phase shift in the two
particles collision. The bosons can have fermionic characteristic by tuning
the interaction, this is the first emergent phenomenon we are talking about
in the paper.

This fermionic excitation can be clearly observed in the antiferromagnetic
Heisenberg chain, which can also be solved by Bethe ansatz [4]. I will not
repeat the calculation process here, but will show some calculation results.
Let’s first consider the following model:

H =
∑
i

[Szi S
z
i+1 + λ(Sxi S

x
i+1 + Syi S

y
i+1)] (10)

When λ = 0, it is Ising model, the ground state is Neel order. When we
increase λ, the fluctuation in the second term will partially distroy the order.
The spinon will start to propagate in the short range (It is in a confined phase,
where the spinons forms bound state). When λ = 1, it is antiferromagnetic
Heisenberg model, the ground state is on a critical point, with an algebraic
order. At this point, the spinons can move freely in the chain and totally
destroy the long range order. The ground state can be considered as the
condensation of spinons. The excitation here is free spinons, which has be
oberseved in the experiments as shown in Fig.(2). The nontrivial thing here
is that spinons are fermions, while the original system is a bosonic model.

In the above calculation, we used Bethe ansatz, which can be used to
exactly solve some one dimensional system, where the interaction can be
decomposed into successive two body interaction. The key ideas here can be
concluded in the Yang-Baxter equation [5], which is shown in Fig.(3).

Besides the fermionic excitation, there is also local bosonic excitation
in these models, no matter the original model is composed by fermions or
bosons. This bosonic excitation is coherent in the low energy area and can
be understood in the language of bosonization. The basic idea is like this:
consider the free Dirac fermion in 1 + 1 dimensions, the density operator
satsifies the following algebra:

[j0(x), j0(x
′)] = [j1(x), j1(x

′)] = 0

[j0(x), j1(x
′)] = −i∂x(δ(x− x′)) (11)

Since the axial current
j5µ = ψγµγ

5ψ (12)

is conserved, we can define the bosonic field φ, which satisfies j0 = ∂xφ,
j1 = −∂tφ = −π and ∂2φ = 0. If we consider the interaction (R†R)2 and
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Figure 2: Two-spinon form incoherent excitation spectrum in KCuF3 [12],
which is different from magnon excitation

Figure 3: Yang-Baxter equation YabYacYbc = YbcYacYab. The scattering can be
decomposed into product of two-body collision.
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R†L†RL, the axial current is still conserved, the Hamiltonian in the density
operator representation has this form [4,6]:

H = λj20(x) +
1

λ
j21(x) (13)

The ground state for this Hamiltonian is

ψ = exp(λ
∫ ∫

j0(x)log|x− x′|j0(x′)dxdx′) (14)

with H|ψ >= 0. The corresponding Lagrangian for this Hamiltonian in the
language of bosonic field is

L = λ∂µφ∂
µφ (15)

which in fact is a free boson system and indicates the fermionic system in
1 + 1 dimensions can have coherent bosonic excitation. This is the second
emergent phenomenon in this paper.

Another interesting model I want to mention here is the Calogero-Sutherland
model[7], which takes this form:

H = −
∑
i

∂2

∂x2i
+ 2(

π

L
)2

∑
i<j

λ(λ− 1)

sin2[π(xi − xj)/L]
(16)

The ground state for this Hamiltonian is

ψ0 =
∏
i<j

|sin[π(xi − xj)]/L|λ (17)

This is because the Hamiltonian can be written in this form H =
∑
iQ
†
iQi +

E0, with Q|ψ >= 0, where

Q = − ∂

∂xi
+
π

L

∑
j

λcot[π(xi − xj)/L] (18)

The ground state can be written in the complex coordinate

ψ0 =
∏
i<j

(zi − zj)λ
λ∏
i=1

z
−(N−1)λ
i (19)

The excitation around the ground state has this form:

ψ = φψ0 (20)
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where φ is the eigenfunction for the Laplace-Beltrami operator:

L =
∑
i<j

(
zi + zj
zi − zj

)(zi
∂

∂zi
− zj

∂

∂zj
) (21)

Notice that operator L is not Hermitian. The eigenfunction for this operator
is Jack polynomial. This operator squeezes a pair zkizkj into zki+lzkj−l, which
has great application in fractional hall effect [8]. We’ve known before that
these one dimensional model can be understood in the interacting fermion
or boson language. In the following, I will focus on the interacting fermion
picture. In this picture, the energy spectrum can be written in this form:

E(I) = (
2π

L
)2

∑
I

I2n2
I + (λ− 1)

∑
I<I′

(I ′ − I)nInI′ (22)

where I is integer and can take value from 1 to N . The first term in Eq.(22)
is free fermion energy and the second term is interacting energy. nI can only
take value 0 or 1. By reorganizing Eq.(22), we can get:

E(k) =
∑
i

k2i (23)

with
kiL = 2π[Ii + (λ− 1)

∑
j

sgn(ki − kj)] (24)

when λ = 0, it becomes free bosons, when λ = 1, it becomes free fermions.
When λ takes other values, the system is interacting fermion or bosons.
For instance, when λ = 3, there are two zeros between every two neighboring
particles in the ground state configuration. It seems that due to the repulsive
interaction between the particles, they will expel from each other. This is
the same as the Lieb-Liniger model we mentioned before: the interaction will
dramatically change the statistics between particles. Haldane generalized
these models and proposed the general Pauli exclusion principle [9]. In this
case, the interacting fermion/boson in the Calogero-Sutherland model can
be considered as free anyon, which satisfies the general pauli principle.

The general Pauli principle can be understood in this way: for a many
particle state, the number of adding a new particle depends on the original
many particle state. For instance, the total one particle state for a system
has number G. If the systems are free bosons, the number of state of adding
a new particle is D = G. If the systems are free fermions, the number
of available state for adding a new particle depends on how many states
has been occupied, thus the number of state for this new particle equals to
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Figure 4: (a) Lowest Landau level in the Landau gauge.(b) Charge density
wave phase at 1/3 filling. (c) the one dimensional fractional hall liquid, which
is similar as AKLT model.

D = G− (N − 1) (The original system has N − 1 particles). In general, we
can define the relation between D and N :

∆D = −λ∆N (25)

where λ is the statistical parameter. This is definition for the anyon from
the aspect of statistical mechanics. The possible state for the N particle free
anyon gas is

W =
(D +N − 1)!

N !(D − 1)!
(26)

Using the basic knowledge in the statistical mechanics, we can derive the
thermaldynamics for the free anyon gas [10]. The statistical distribution
satisfies:

n(ε) =
1

w(ε) + g
(27)

where w(ε) is the solution of the following equation:

wλ(1 + w)1−g = eβ(ε−µ) (28)

For the anyons with general Pauli principle, they always have some fermionic
characteristics, and have the pseudo-fermi surface. For the Calogero-Sutherland
model, the ground state is the occupied state up to the pseudo-fermi point.
There are three possible excitation: particle excitation, hole excitation, particle-
hole excitation. For the particle excitation, we just add a new particle to the
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system with the fermi point shifted a little. For instance, when λ = 3, it has:

|1001001 >→ |1001001001 > (29)

For the hole excitation, non-trivial things happen, it is similar as the domain
wall excitation:

|1001001 >→ |10010001 > (30)

with the effective charge −1/λ. Notice that the original system is composed
of particle with integer charge. The fractional charge excitation is the emer-
gent phenomenon due to the interaction between the particles.

After discussing several one dimensional interacting models, let’s move to
the two dimensional fractional hall liquid, which has close relationship with
these interacting one dimensional models.

The integer Hall liquid is a non-interacting system, in the Landau gauge,
the ground state looks like the pattern in Fig.(4)a, which is composed of one
dimensional line and fully occupies the two dimensional plane. The electron
is bounded in the x direction but can move freely in y direction. When
we add a interaction term between particles, since the plane is fully filled,
nothing interesting will happen.

The interesting things happened when the plane is partially filled. In the
non-interacting limit, the ground state is highly degenerate by picking up
randomly M states from N states. When we add interaction, at odd filling
factor, the ground state will open a gap and form a bound state without any
symmetry breaking. According to Fig.(4)a, the two dimensional model with
pseudo-potential interaction can be mapped to a effective one dimensional
model[11]:

H = gκ3
∑
p

b†pbp (31)

where κ is the radio between the magnetic length and the circumference of
the cylinder κ = 2πlB/L and bp

bp =
∑
q

(qe−κ
2q2cp−qcp+q) (32)

The physical picture for the above model can be understood in the following
toy model (at 1/3 filling):

H = H1 +H2 (33)

with

H1 =
∑
i

nini+1 +
1

2
nini+2 (34)

H2 = g
∑
i

c†ici+1ci+2c
†
i+3 (35)
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H1 is repulsive potential and H2 is pair-hopping term. In the thin-torus
limit lB >> L, κ = 0, the Hamiltonian reduces to H1 with g = 0, the ground
state is charge density wave with three different ground states on the torus
|100100100... >, |010010010... >, |001001001... >. For the two dimensional
limit which corresponds to the fractional hall liquid phase, lB << L, g = 1.
When we increase g from 0 to 1, the charge density wave phase and fractional
hall liquid phase are adiabatically connected without closing the gap. The
two phases are plotted in Fig.(4)b and Fig.(4)c. These two phases all have
1/3 fractional charge excitation. This method can be generalized to other
state in fractional hall liquid.

In conclusion, we have discussed three emergent phenomena in low di-
mensional strongly correlated system. The first emergent phenomenon is the
changing from boson to fermions by tuning the interactions, which can be
generalized to the concept of anyons obeying general Pauli exclusion prin-
ciple. The second emergent phenomenon is the local coherent bosonic exci-
tation in low energy excitation which can be understood in the language of
Luttinger liquid. The third emergent phenomenon is the fractional excitation
in the system composed of integer charge, which occurs in the fractional hall
liquid and some one dimensional correlated system.
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