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Abstract:  In this article, I would first introduce a new phase of matter with symmetry fractionalization 

and symmetry protected topological orders. Such a system is beyond Landau's symmetry breaking theory. 

For a symmetry protected topological ordered state, even without symmetry breaking, it is still different 

from a conventional non-symmetry breaking one as it cannot be adiabatically connected to a trivial 

disordered state as long as the symmetry is protected. I would give the basic rules to classified different 

symmetry topological phases, based on the Matrix Product State Representation and the group 

cohomology of the symmetry. Then, a complete set of nonlocal string order would be defined in theses 

phases, which shows that such s symmetry fractionalization state is different from a trivial disordered 

state since its local entanglement is protected by symmetry and the irreducible entanglement in these 

phase of matter is responsible for its nontrivial topology. 

 

 

 

 

 

*yizhiyouphysics@gmail.com  

mailto:yizhiyouphysics@gmail.com


[Type text] 
 

I. The breakdown of Ginzburg–Landau theory 
 

For many years, the Ginzburg–Landau theory
[1]

 for phase transitions had been regarded as 

the basic foundation of the phase transitions as well as the classification of different phases. 

Phases of matter are different to each other as they have different symmetry, e.g. breaking of 

spin rotation symmetry gives the magnetic order, breaking of translational symmetry gives the 

stripe phase, dimer solid etc. 

However, the birth of fractional quantum hall effect
[2]

, had lead this theory in to puzzle. Even 

two phases of matter shares the same symmetry, they cannot be adiabatically connected without 

a phase transition. Later on, there has been raised some exactly solvable models to show that 

they do exist such a ―topological phase of matter‖, such as toric code model
[3]

, string net 

model
[4]

, quantum dimer model
 [5]

, whose ground states does not break any symmetry, but still 

distinguished  from other trivial disordered states. What makes issue more interesting is that 

these system have ground state degeneracy depends on the topology, as well as abelian/non-

abelian excitation and nonlocal order parameter. 

In order to avoid the misunderstanding of some concept in the later content, here I would first 

give the definition of gapped topological states
[6]

. There are two equivalent definitions, which 

based on the Hamiltonian or the ground state.1) A topological phase of matter’s Hamiltonian is 

gapped, and cannot be adiabatically connected to a trivial one without closing the gap. 2) A 

topological phase of matter is has a many-body ground state wave function which could not be 

transformed to a direct product state through a local unitary transformation. For such a system 

with topological order, it has ground state degeneracy, fractional excitation (abelian or non 

abelian), topological entanglement
[7,8]

. 

Apart from the ―topological states of matter‖, we also have ―symmetry protected topological 

(SPT) states
[6]

‖, these states do not have long-range entanglement, and can be adiabatically 

deformed into a trivial state. However, if I impose a symmetry constrain, such of phase of matter 

is distinguished from the trivial state. Therefore, symmetry protected topological state could be 

defined parallel as follows, 1) Its Hamiltonian is gapped, and cannot be adiabatically connected 

to a trivial one without closing the gap until you break a certain symmetry.  2) Its many-body 

ground state wave function could not be transformed to a direct product state through a local 

unitary transformation which preserves the symmetry. Thus, topological insulator and 

topological superconductor
[9]

, upon this definition is a symmetry protected topological phase, 

which was protected by time reversal symmetry, PH symmetry, or else. In these symmetry 

protected phases, there usually exist edge states
[10]

 (except parity symmetry protection), 

entanglement spectrum degeneracy and string order 
[11]

(not Ill defined sometimes). 
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Draft 1. Diagram for the gapped phase classification 

 

II. Classification of Symmetry protected topological phase 

 
i. AKLT state----a toy model for fractional symmetry 

Haldane conjecture
[12]

 suggests that1-D Heisenberg model with integer spin should have a 

gapless excitation. In 1988, Affleck
[13]

 et al. shown a spin 1 valence bond model which could 

characterize Haldane phase and its ground state is exactly solvable. The ground state, named 

AKLT state does not break any symmetry and have zero-mode edge excitation carrying spin ½. 

The spirit of AKLT state could be caught by a ―Projective Entanglement Pair state‖(PEPS) 
[14]

form. 

 

 

Draft 2.AKLT state 
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Assume there is 2 spin ½ on each site, every spin ½ on the right side of the site is coupled to 

the left side spin ½ on nearest site, forming a singlet. Then, projecting the 2 spin ½ on each site 

into the totally spin 1 subspace would we get exactly the AKLT state. The AKLT state could be 

written via Schwinger-boson representation 
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Where   
   

 
 are Schwinger-bosons. 

Here do we know that if chose the open boundary condition, we would get a free spinon on 

each edge, carrying spin ½. Thus, AKLT state would emerge a fractional ―zero-mode edge state‖ 

carrying spin half-integer, although the system we are dealing with is a spin 1. Note that the 

AKLT state is a short ranged correlated state which does not break any symmetry, neither spin 

rotation symmetry or translational. However, it is still different from a trivial direct product state 

  ⟩    ⟩   ⟩   ⟩   ⟩      with the same symmetry which could be distinguished from 

their edge state, their projective representation, nonlocal string order
[11]

 and entanglement 

spectrum. We cannot adiabatically connect such two states if we maintain a certain symmetry, 

e.g. D2h, time reversal, parity, etc. Thus, AKLT is the first example with fractional symmetry and 

its topological character is protected by symmetry. In order to give a clear and rigid statement for 

its nontrivial symmetry protected topology, I would introduce Matrix product state in the 

following content. 

The development of Matrix product state
[14]

 (MPS) and Tensor network states
[15]

 (TPS) gives 

us an effective way to describe the many-body wave function. It had been shown that for any 

state with finite correlation length, we can use a finite dimension Matrix or Tensor to describe 

the wave function. 

|Φ>=Tr ( Mi
zi Mi

zi……………. Mi
zi|zi…………..>)  

zi is the local basis for i site. And Mi
zi is the matrix form the zi. For AKLT state, we can easily 

tell its MPS through its Schwinger-boson representation. 
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If I choose the time reversal basis,   ⟩  
 

√ 
   ⟩    ⟩,   ⟩  

 

√ 
   ⟩    ⟩,   ⟩    ⟩. I 

get,                      such a formalism is invariant under D2= {exp iπSX, exp iπSY, 

exp iπSZ, I} group. Thus, for each element g in D2, as the AKLT state is invariant under D2, 

u(g)   ⟩=           ⟩, the MPS matrix should also change as M’i
zi= eiθ(g1) U(g)† Mi

zi eiβ U(g)[6], for 
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the AKLT state, I have                                                     as we know 

that the group element in D2  exp iπSX * exp iπSY = exp iπSZ.  However, for U(g), we find 

                                   , Thus, U(g) forms a projective representation of 

group D2, which satisfied U(g1g2)= expi(θ12)U(g1)* U(g2).  This extra phase in projective 

representation is extremely important for AKLT’s nontriviality. For a trivial direct product state 

  ⟩    ⟩   ⟩   ⟩   ⟩     , the U(g) forms the linear representation instead. 

 

The parent Hamiltonian of AKLT state could be written via projective operator
[13]

. 

H= 
 

 
       

              ,  

The 
 

 
       

          term projects the nearest 2 spin 1 into the Stotal=0 or 1 subspace, 

thus, there must form a singlet to ensure this projection, which gives the AKLT state. For open 

boundary condition, the AKLT state have a dangling spin ½ on each end, thus gives a zero 

spinon mode and 4-fold degeneracy. The AKLT state have a short ranged correlation function 

C(i,j)~exp- (i-j)/3, and preserves the translational symmetry. However, there is a hidden AF 

order in AKLT state, and thus a non-local string order could characterize it. 

 

If we expanded the AKLT state in the on site Sz basis, the configuration of each term would 

be like follows, 

 

100000-1001-1001000-10001-1000010000-1010-1001-100000, 

 

Seems to be disordered, however, if we eliminate all the 0 terms in these configurations, 

 

100000-1001-1001000-10001-1000010000-1010-1001-100000, 

 

      You would magically find it has a hidden dilute AF order
[11]

. To characterize this hidden 

order, we can define a string order parameter. 

 

       ⟨          
           

  
      

       ⟩       

 

This string order does not only exist in the AKLT state, in fact, in a wide region of Haldane 

phase have such order parameter to be nonzero. The Heisenberg model with uniaxial anisotropy 

with D2 symmetry,  

     
    

    
 
   

 
    

    
      

         

In the whole Haldane phase, there exist a string order  ⟨       
           

  
      

    ⟩. In 

the later discussion, I would see that the existence of the string order parameter id related with 

the irreducible entanglement protected by the symmetry. However, due to the non-uniqueness of 

the fixed point upon tensor network renormalization
[16]

, the definition of string order should be 

modified. 
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Draft 3. Phase diagram of the Heisenberg model with uniaxial anisotropy from W. Chen et al. PRB 67, 
104401 (2003) 

 

The string order parameter could be transformed into the correlation function if we make a 

nonlocal duality transformation to map the Hamiltonian to the dual space
[17]

. 

The original Heisenberg model with uniaxial anisotropy, 

       
    

          
   

  
 

 
   

         

If I do a non-local unitary transformation which preserves the D2 symmetry, 

          
   

       

The Dual-Hamiltonian reads 

           
 

      
    

 
          

      
     

 
    

   
  

 

 
   

     

The string order parameter now becomes the correlation function 

〈    
           

  
      

 〉  〈    
     

 〉  

The new Hamiltonian in the dual space H
dual

 is still gapped with a finite correlation length 

and have a D2( Z2*Z2) symmetry. Thus, the non-vanishing correlation function reveals a 

spontaneous symmetry breaking of the ground state. Note that in the Haldane phase of the 

original Hamiltonian have 4 folded degeneracy, due to the zero mode edge state. In the dual 

Hamiltonian after the nonlocal unitary transformation, the ―zero mode edge state‖ flows into the 

bulk and gives the 4 states which breaks the discrete Z2*Z2 symmetry. In sum, through such a 

duality transformation, we transform a symmetry protected topological phase into a symmetry 

breaking one. Such s duality is very universal in one dimensional system. The very famous 
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example is the one dimensional kitaev chain
[18]

, which exhibit a free majorana mode on the edge, 

could also dual to a Z2 symmetry breaking phase. The main idea here is to change the degenerate 

edge state into the bulk and thus becomes a symmetry breaking phase. However, such approach 

usually fails in two dimensions as it is almost impossible to annihilate the gauge even the 

transformation is nonlocal. 

 

ii. Classification of symmetry protected topological phases based on cohomology group 

In the former content, I had introduced MPS representation for all gapped system. An 

advantage for MPS is that as long as we had write down a wave function in MPS, it is very easy 

to find its parent Hamiltonian whose GS is exactly the MPS state. Thus, instead of classified all 

gapped phases through the Hamiltonian, which has less chance to be exactly solvable, we can 

first write out a wave function in MPS, and classified the MPS.   

For a symmetry group G, if a physical state Φ is invariant under G, for any g1 (an element in 

group G), g1 |Φ>=eiα |Φ>. Meanwhile, The matrix should change in the following style under a 

symmetry operator g1, M’i
zi= eiθ(g1) U1

† Mi
zi U1 . Here e

iθ(g1)
 form the 1-d representation of the 

symmetry group, and U1 form the projective representation of the symmetry group
[6]

. The phase 

factor e
iθ(g1)

 is related with translational symmetry, so when translational symmetry is absent, we 

can always change the basis with a phase twist to adjust the e
iθ(g1)

 into the matrix. 

For the group element g12= g1 * g2, U changes as U12= eiΦ12 U1 * U2, two elements times 

together would different from the element U12 up to a phase, that is projective representation.  

The symmetry operator representation acts on the state forms a linear representation, while 

symmetry operator representation on the matrix forms a projective representation. 

We would realized that here U1 is not unique, we can add a phase to U1, eiβ U1 also follows 
the relation that, M’i

zi= eiθ(g1) (eiβ U1)† Mi
zi eiβ U1 . Thus, the phase factor eiΦ12 in “U12= eiΦ12 U1 * 

U2” is not unique, since we can apply an arbitrary phase to U, thus we would define the 

equivalent class of eiΦ12, where eiΦ12
~ (eiβ2 eiβ1/ eiβ12) eiΦ12. For different cyclotron, eiΦ cannot 

transform to each other, thus eiΦ  belongs to different equivalent class if they cannot connect 

through a (ei
β2

 ei
β1

/ ei
β12

) phase
[6]

. 

As I have defined the equivalent class here,we can classified different state with the same 

symmetry G with their Matrix product state, or more precisely, equivalent class of the eiΦ, each 
of this class is a group member of the 2nd cohomology group H(g, U(1))[6]

. Note that if I impose 

on translational symmetry, then different  eiθ(g1)
  would also classified different states. 

Below is a table of the classification of symmetry protected phase in one dimension. 
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Draft 4 classification of SPT phase in 1D, from Xie Chen et al, arXiv:1103.3323 

Symmetry protected topological states classification shows that such phases of matter 

have nontrivial cohomology in their wave function. However, regardless of the completeness of 

such classification, how to perceive the SPT order in a more physical and direct way?  

Below I would illustrate two ways to suggest the physical picture of SPT state—edge 

state active operator and string order. These physical parameters including the cohomology all 

comes from the irreducible entanglement protected by symmetry. 

From the example of AKLT state, we can clearly realized that with the same SO(3) 

symmetry, AKLT state have an edge of half integer spin while trivial DPS state have integer 

spin. Thus, in the PEPS language, the 2 virtual spins on each site is integral or half integral 

before projection would definitely give gapped state with different topology. Since spin half 

integer have projective representation under SO(3) and integer spin is linear representation. 

Thus, edge state is an effective way to distinguished different SPT phase. However, only spin 

integer or half integer on the edge is not enough to tell all phases from each other. For example, 

for a spin chain with onsite D2 symmetry and time reversal symmetry, we can write 4 

distinguished wave functions, with the same symmetry but different cohomology under D2h. 
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Table1. Parent Hamiltonian and MPS of 4 SPT phase with D2h symmetry, from Z-X Liu et al. Phys. Rev. B 84, 075135 
(2011) 

From above table, we can see that the four gapped phases are distinguished from each 

other under D2h  protection, but with the same spin ½ on the edge (as the irreducible dimension of 

the matrix is 2, which contains the degree of freedom as a spin 1/2). Thus, we need more 

information about the edge to distinguish them. 

Since the edge carries a free spin ½, if we apply a magnetic field in different polarized 

direction. As it breaks the time reversal symmetry, the edge states would be lifted if we add a 

Zeeman term in the Hamiltonian. For AKLT case, it is obvious that both Zeeman field in x, y, z 

direction would lift degeneracy. However, in Sx/Sy /Sx phases, the edge spin is anisotropic and 

only field applied in x/ y /z direction can lift up the GS
[10]

. 

 

Draft 5. Numerical result showing that in Sx phase, if applying Zeeman field in y and z direction, the energy gap 
lifted between edge states would disappear in the thermal dynamic limit, from Z-X Liu et al. Phys. Rev. B 84, 
075135 (2011) 
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The above is just a simple case, to generalize it to a more universal case, we have to 

define a series of edge active operator {Oi}. In the physical space, the Oi transforms under 

symmetry group element as                . Meanwhile, in the MPS space, the pauli matrix 

(here the MPS dimension is 2, so pauli matrix is enough to expand the whole space, if the MPS 

dimension is higher, we can use other Gamma matrix, the process is the same)             
      (here the U(g)is the transformation for the matrix of MPS)

[10]
.
 
If O under symmetry 

operation have the same set of value   with one pauli matrix under all group element g, then we 

can say that the physical operator acts in the real system have the same algebra of pauli matrix in 

the MPS state, thus it should behavior as the edge active operator which lifts the edge 

degeneracy. 

Likewise, we can then define the string order parameter     
           

  
      

 . Here 

Oi corresponds to the edge active operator I find I before. 

III. Entanglement spectrum and topology 

Till now, I have defined edge active operator and string order parameter to characterize 

the different gapped phases. However, what makes a phase topological (under symmetry 

protection)? For a conventional symmetry breaking phase, we know that is the breaking 

symmetry and local order tells each states of matter from each other.  Then what about 

topological states? From the previous section, I have generalized that string order and edge state 

could tell different phases of matter apart. But what is the driving force of such phase of matter 

to present ―nontrivial topology‖?  Topological states as well as symmetry protected topological 

states of matter only exist in quantum system. Then it is natural the concept of symmetry 

breaking and local order, both appear in classical and quantum system, cannot classified also 

states of matter. Thus, what I need is a physical property unique in quantum. That is, quantum 

entanglement.  

The entanglement entropy had already played an important role in quantum phase 

identifications. For critical system, the entanglement entropy scaling factor c is just the central 

charge of the CFT
[19]

. In gapped systems, if the system does not have topological order, the 

entanglement entropy should obey area law, otherwise, there would be an extra part from the 

area law which tell us the anyon excitation in the bulk
[7,8]

. For a symmetry protected topological 

phase, there should be no long ranged entanglement, thus no topological entropy. However, even 

it obeys the area law, the entanglement spectrum is still physically different from the trivial state. 

The spectrum is always degenerate or gapless. In fact, the SPT phase could have a nontrivial 

―topological character‖ since the some part of the entanglement is irreducible under symmetry 

protection
[20]

. In one dimension, this character is easy to verify through the wave function fixed 

point under tensor network renormalization
[16]

. 

 

 

Draft 5. fixed point state 
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Above graph is a picture for the fixed point wave function for tensor network RG. On 

each site, there are 2 virtual spins S on each site, every spin is bonded with a maximum 

entangled state with the other site while two spin s on the same site have no entanglement. Thus, 

if there is a symmetry constrain, we cannot make a local unitary transformation which preserves 

the symmetry to disentangle this state. For instance, if the virtual spin on these site are half-

integral, no matter what local unitary transformation we add to the state, the state cannot be 

transformed to a direct product state    ⟩    ⟩   ⟩   ⟩   ⟩     , as this state have 

different eigenvalue with the fixed point state(half integer) under time reversal operator, and the 

local unitary transformation preserves the symmetry. In this way, the local entanglement should 

always exist under symmetry protection and the entanglement spectrum should always have 2 

folded GS degeneracy. 

 We can get a more general argument in all 1D systems, in one dimension fixed point 

states, the virtual spin S on each site is related with the irreducible dimension of the projective 

representation. Thus, if the for the group element in the cohomology group, the irreducible 

dimension directly suggests the entanglement spectrum degeneracy. Thus, for any projective 

representation, the dimension is at least 2, thus the entanglement spectrum have degeneracy 

protected by symmetry. Thus, we can do nothing to disentangle the state until the symmetry is 

damaged or there appears a phase transition which damages the GS manifold. 

In 2D, the symmetry protected topological order and entanglement spectrum is still 

controversial. Numerical result had shown that the entanglement spectrum in a SPT phase is 

gapless and similar with the edge spectrum
[21]

. There is also analytical analysis showing that for 

free fermion models or interacting fermion with chiral edge state, the entanglement spectrum and 

edge spectrum should have one to one correspondence
[22,23]

. In FQHE system, it was shown that 

if we do the cut in the particle number space instead of real space, the entanglement spectrum 

would be similar to the bulk energy spectrum, and the braiding of the anyon quasiparticle
[24]

. In 

sum, entanglement is an efficient way to probe the topology of the system and through 

entanglement spectrum, we can get most information (excitation, braiding) of the system from 

the GS manifold. 
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