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Abstract

Swarm intelligence is an important concept in artificial intelligence and com-
puter science with emergent properties. The essential idea of swarm intelligence
algorithms is to employ many simple agents applying almost no rule which in turn
leads to an emergent global behavior. In this paper, we will introduce some of
the most famous bio-mimicry algorithms and discuss their applications as well as
metaheuristics inspired from the collective behaviors of nature.

1 Introduction

To put it in a simple way, swarm intelligence can be described as the collective behavior
emerged from social insects working under very few rules. Self-organization is the main
theme with limited restrictions from interactions among agents. Many famous examples
of swarm intelligence come from the world of animals, such as birds flock, fish school and
bugs swarm. The social interactions among individual agent help them to adapt to the
environment more efficiently since more information are gathered from the whole swarm.
This paper aims to introduce several well-known and interesting algorithms based on
metaheuristic derived from nature and their applications in problem solving.

1.1 General principles

To model the broad behaviors arisen from a swarm, we introduce several general principles
for swarm intelligencel[1]:

Proximity principle The basic units of a swarm should be capable of simple compu-
tation related to its surrounding environment. Here computation is regarded as a direct
behavioral response to environmental variance, such as those triggered by interactions
among agents. Depending on the complexity of agents involved, responses may vary
greatly. However, some fundamental behaviors are shared, such as living-resource search-
ing and nest building.

Quality principle Apart from basic computation ability, a swarm should be able to
response to quality factors, such as food and safety.



Principle of diverse response Resources should not be concentrated in narrow re-
gion. The distribution should be designed so that each agent will be maximally protected
facing environmental fluctuations.

Principle of stability and adaptability Swarms are expected to adapt environmen-
tal fluctuations without rapidly changing modes since mode changing costs energy.

2 Ant colony optimization algorithms

The most recognized example of swarm intelligence in real world is the ants. To search for
food, ants will start out from their colony and move randomly in all directions. Once a ant
find food, it returns to colony and leave a trail of chemical substances called pheromone
along the path. Other ants can then detect pheromone and follow the same path. The
interesting point is that how often is the path visit by ants is determined by the concen-
tration of pheromone along the path|[3]. Since pheromone will naturally evaporate over
time, the length of the path is also a factor. Therefore, under all these considerations,
a shorter path will be favored because ants following that path keep adding pheromone
which makes the concentration strong enough to against evaporation. As a result, the
shortest path from colony to foods emerges.
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Figure 1: Ants select the shortest path

Learning from behaviors of real ants, a metaheuristic has been formulated for solving
combinatorial problems, such as travelling salesman problem.

Define a combinatorial problem P as a triplet (S, 2, f)[3]:
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1. S is the search space over discrete decision variables X; € D; = {v},... v
2. ) denotes the set of constraints.

3. Objective function f : S — R to be maximized or minimized.

a solution s € S assigns values to variables that satisfies {2 and it asks for a solution
s* € S such that f(s*) is the global minimum or maximum.

The way that ant colony optimization algorithms tackle problems in this category is
to employ the concept of pheromone. The ACO metaheuristic is split into three phases[2]:

Initialization;

while not terminated do
Construct solution using artifical ants;
Local search (optional);
Update pheromones;

end
Algorithm 1: The ACO metaheuristic

Solution construction Using m artificial ants, solutions C' = {¢;}, ¢ = 1...n,
Jj =1...D; satisfies all the constraints {2 are constructed, where ¢;; assigns the decision
variable X; = v/. This can be also viewed as a random walk of ants on the construction
graph G.(V, E).

Local search With specific design for individual problem, a local search could improve
the constructed solution. However, since this is highly variable according to problems,
local search is an optional process.

Update pheromones Pheromone values for promising solutions will be increased and
values for undesired solutions will be decreased by pheromone evaporation. Thus the
best solutions will be rewarded with the highest concentration of pheromones.

Many NP-hard problems in computer science, which are problems with exponential
time worst case complexity, can be solved using ACO algorithms, such as the assignment
problem category and the scheduling problem category[2]. There are proofs that ACO
algorithms will converge to these best-performing algorithms. However, the speed of
convergence is unknown and the performance of ACO algorithms largely depend on if an
optimal local search procedure can be found and this is very problem-specific.[3]

3 Bee colony optimization algorithms

Just like ants, bees have similar food collecting behaviors. Instead of pheromones, bees
colony optimization algorithm relies on the foraging behavior of honey bees. At the first
stage, some bees are sent out to look for promising food sources. After a good food
source is located, bees return back to colony and perform a waggle dance to spread out



information about the source. Three pieces of information are included:1. distance, 2.
direction, 3. quality of food source. The better the quality of food source, the more bees
will be attracted. Therefore, the best food source emerges[4].
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Figure 2: How bees work to find food sources

The metaheuristic extracted from the foraging behaviors of bees can also be applied to
solve combinatorial problems; especially problems involve global minimum or maximum.
Similarly, the BCO metaheuristic undergo several phases[5]:

Initialization;

while not terminated do
Employed Bees Phase;
Onlooker Bees Phase;
Scout Bees Phase;
Memorize the best solution;

end
Algorithm 2: The BCO metaheuristic

Initialization All the food sources F:n, m =1,..., N are initialized. F,, are solutions to
the optimization problems and will be tuned by BCO algorithm to minimize or maximize
objective function f defined above.

Employed Bees Employed bees will search in the neighborhood of F, from memory
with a random vector R A fitness will be calculated to determine if R leads to a
better food source. The usual choice for fitness function 7T is:



(1) T(a7,) = ezl if f(am) 2 0
L+ |f(am)], if f(an) <0

Onlooker Bees After employed bees shared information about food sources, onlooker
bees will probabilistically choose their destination accordingly. Usually, this is calculated
depending on the fitness values provided by employed bees. For example, with the above
defined fitness value T'(x,,), the probability value p,, can be calculated:

T(2m)

2) P = =N
Zm:l T(ﬂfm)

With more onlooker bees recruited to richer resources, positive feedback also arises for

richer resources.

Scout bees The third kind of bees is the scout bees. They are usually these employed
bees abandoned by the algorithms because the quality of food sources they found is poor.
Scout bees will again start from the beginning and search for food sources randomly.
However, negative feedback will lower the attractiveness of their previous found food
sources.

The BCO algorithms have interesting applications in numerical optimizations, for
example, it can be used to find global optimal solutions of functions. Moreover, re-
cent studies suggest that the BCO algorithms can also be applied to problems in shop
scheduling[8], neural network training[6] and imaging processing|7].

4 Particle swarm optimization algorithms

Bird flocking and fish schooling are the inspirations from nature behind particle swarm
optimization algorithms. It was first proposed by Eberhart and Kennedy[9]. Mimicking
physical quantities such as velocity and position in bird flocking, artificial particles are
constructed to “fly” inside the search space of optimization problems.



Figure 3: Bird flocks

However, different from the previous two algorithms using pheromone or feedback as
tools to get rid of undesired solutions, particle swarm optimization algorithms updates
the current solution directly. As you can tell from the following description of the frame-
work of PSO algorithms, with fewer parameters, PSO algorithms are easy to implement
and achieve global optimal solutions with high probability.

Initially, a population of particles is distributed uniformly in the multi-dimension
search space of the objective function of the optimization problem. Two quantities are
associated with particles, a position vector x; and a velocity v;. At each time step, the
velocities of particles will be updated according to the following formula[9]:

(3) G = vl xa(b— at) + o B — 2l)

where b is the global best location and 7 is the best location in the neighborhood of
particle p;. Both «,f are learning parameters and rq, 7o are random parameters ranging
from 0 to 1.

The positions will be updated simply by[9]

(4) it =l ol

The importance of including a neighborhood best location 7 for each particle is to
avoid the swarm being trapped into a local minimum. This is where the social connection
comes into play in particle swarm optimizations. The social connection topology is called
swarm’s population topology. There are different types, for example, the gbest topology.
With such a topology, particles are all attracted to the global best solution; therefore,
it represents the fully connected social network. The lbest topology, on the other hand,



connects each particle with only C' neighbors. This kind of topology slows the process
of convergence compared to gbest, however, it also makes the PSO algorithms more
capable of avoiding local minima. The wheel topology connects neighboring particles to
only one particle-the focal particle. This type is the one with the smallest number of
connections[10].
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Figure 4: From left to right: gbest, Ibest, wheel topology

5 Cuckoo search

Cuckoo search was invented by Xin-she Yang and Suash Deb in 2009[11]. This algorithm
is inspired by the brood parasitism behavior of some species of cuckoo. They will lay
their eggs in other bird’s nest. If the host bird find out about this, it will either throw
away the intruding egg or simply abandon the whole nest and start a new one. However,
some species of cuckoo are very good at making their eggs the same as the host’s egg,
and therefore greatly increase the survival probability of their eggs.

Basic rules of cuckoo search[11]:
e Each cuckoo lays one egg at a time and dumps it in a randomly chosen nest.
e The best nests with high quality of eggs will be brought to the next generation.

e The number of host nests is fixed. A host bird will discover the egg is laid by cuckoo
by a probability p, € (0,1). The host bird can get rid of the egg or build a new
nest.

Any egg x; in the nest represent a solution to the problem, and at each time step, we
use the following to generate new solutions[11]:

(5) 2 = 2t + 0 @ Levy(N)

where « is the step size related to scales of the problem and A is the parameter of Levy
flight= u=".



Initialization of hosts;

while not terminated do
Let a cuckoo generate a new solution using the above Levy flight process and

calculate the fitness F};

Choose a nest j randomly;

If (F; < Fj) then replace solution j ;

Abandon p,, percent of the nests with new ones built;

Memorize the best solutions
end

Algorithm 3: Cuckoo search|[15]

Figure 5: 2D Michalewicz’ function with many minimums

Let us apply cuckoo search on a test function-the 2D Michalewicz’ function, to find
global minimum with 20 nests and p,=0.25.
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Figure 6: From left to right: Initial and final positions of the nests marked using dots[12]

Compared with the particle swarm optimization algorithms introduced above, cuckoo
search has several advantages and outperform the PSO algorithms[12]. First of all is its
usage of Levy flight for random walk. Levy flight shares certain common grounds with
the flight behaviors of animals and insects in nature[14]. Therefore, instead of having
uniform or Gaussian distributed random generator, Levy flight produces more suitable
and efficient step size for nests in search space. Also, unlike particle swarm, cuckoo search
has less parameter that needs to be fine-tuned.

6 Conclusion

In this paper, I introduced four interesting nature inspired algorithms in swarm intel-
ligence. The ant and bee colony optimization algorithms are based on metaheurisitic
derived from their feedback systems: pheromones and waggle dances. The information
accumulated from their collective behaviors guides each agent toward the optimal solu-
tion. Particle swarm optimization algorithms have the simplest framework, employing
particles to search for optimal solution directly. With the help of social interactions and
related population topologies, PSO algorithms are able to avoid local minimums and
search for global optimal solution more efficiently. Cuckoo search is one of the most
interesting algorithms. It mimics the brood parasitism of cuckoos. By protecting better
solutions and abandon undesired ones throughout evolution, the global optimal solution
emerges. All of the four algorithms have rich applications in problem solving. They
can be customized to deal with problems such as NP-hard problems, combinatorial opti-
mization problems and numerical optimization problems. On the other hand, we should
also note the limitations of swarm intelligence. First of all, all swarm intelligence algo-
rithms have parts that are problem-specific, for example, the performance of ant colony
optimization algorithms largely depends on the local search subroutines and population
topologies have influences on the performance of particle swarm optimization algorithms.
Secondly, it is hard to analyze the computational complexity of these algorithms[16, 3],
therefore, it is difficult to tell whether a swarm intelligence algorithm will be suitable or



efficient for certain problems. Moreover, the famous “no free lunch theorem” by Wolpert
and Macready[17] questions the overall performance of swarm intelligence algorithms and
argues that if we take an average over all problems, every optimization algorithm works
equally well.
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