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Abstract

In this review article, we point out spontaneous symmetry breaking
is closely related to the emergence of the topological defects. Basic
definitions and dynamics of the domain walls are introduced in the
second section. Finally, we worked out an example of the spherical
domain wall by using semi-classical approach.



1 Introduction

Cosmic strings are one dimensional topological defects which may arise from
a symmetry breaking phase transition of the early universe. Consider the
geometry of the early universe is a non-connected vacuum manifold, M.
Cosmic strings are characterized by non-trivial fundamental group of the
manifold, M(m (M) # I), which is an analog of the topological defect of
two dimensional vortex. The manifold, M is not contractible which means
the singularity corresponding to a hole cannot be removed by continuous
deformation. There are other topological defects in the curved spacetime
such as monopoles, domain walls, and textures.

This expository article is mainly focused on the basics of the cosmic
strings and topological defects. We basically give a short account of the
theory based on the book by Vilenkin and Shellard. The article is organized
as follows. First, introduce the origin of the topological defects in the uni-
verse. In the book, they argue that the symmetry of Higgs fields (scalar
fields) break because of the non-zero expectation value of the ground state.
Hence, we can heuristically determine that the manifold has some non-trivial
topological properties. Second, we explain the concept of domain walls and
their non-trivial topological properties. Finally, we will work out an exam-
ple of the defects in de Sitter space (Minkowski spacetime), which is closely
related to the ideas of domain walls and the ideas of inflation in the early
universe. We do not guarantee the correctness of this article, because the
reference is rather outdated and there are new discoveries that may disprove
the arguments addressed in this article. However, from my personal view-
point, the idea of spontaneous symmetry breaking associated with cosmology
is very interesting, because it perhaps addresses the fundamental question of
the true ground state of the early universe.

2 Spontaneous Symmetry Breaking

The ideas of spontaneous symmetry breaking usually associated with second
order (continuous) phase transition originally come from condensed matter
physics. The phenomena of superconductivity can also be understood via
spontaneous symmetry breaking, where the photon becomes massive due to
global U(1) gauge symmetry breaking. Hence, spontaneous symmetry break-
ing is closely related to the macroscopic, non-localized phenomena, namely



BEC (Boson Einstein Condensation). In high energy physics, gauge bosons
become massive due to Higgs Mechanism. Eq. (1) features the idea of spon-
taneous symmetry breaking.

L= (0,0)(0"9) = V(9) (1)

where V(6) = 1A(é6 — 7)(A,n > 0).

After some algebra, we can verify the Lagrangian is invariant under global
gauge transformation, where ¢(z) — ¢**@¢(x). To find the ground state, we
take derivative of the potential with respect to ¢, 9V (¢)/0¢ = 0. So the
corresponding field is described by a circle, |¢| = 7. This result leads to an
interesting point. We will get a non-zero expectation value that has a phase
factor €. Furthermore, the expectation value featured by the ground state
is not invariant under global gauge transformation. Hence, we can deduce
that the symmetry of vacua is spontaneously broken.

In Problem 8-1, we further study the broken symmetry of vacua by vari-
ational analysis of the abelian-Higgs Model.

L= ,D;ngD#qb - V(¢) - ;le,F“V (2>

where ¢ is a complex scalar field and D,, = 0, —ieA,, is the covariant deriva-
tive. Choose the phase of ¢ to be zero when the magnetic field is absent,
®o = 1. We can proceed to expand ¢ up to second order around ¢q in terms of
the real and the imaginary parts of the fluctuations, ¢; and ¢, respectively.

¢=p+ (o1 +iga) (3)

where I have been a little bit sloppy here without taking account of the
normalization factor of the wave function. Now, under the U(1) local gauge
transformation,

o(z) = € @g(a), Au(r) > Au(z) +e ' Dua(x) (4)

we find that ¢, goes away under the prescription of the broken-symmetry of
the vacua, which means one degree of freedom of the scalar field is absorbed
into the massive photon field, A,. This model, as shown in the HW problem,
corresponds to the Ginzburg-Landau model of a superconductor, where ¢
becomes the Cooper pair wave function.

It is natural to ask the following questions. Since the topology of the
manifold, M where ¢ lives, has topological defects due to the symmetry
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breaking (second order phase transition); what are those unbroken symmetry
and how to describe them? ! In the next section, we will consider the simplest
example of the topological defects, ¢* kinks.

3 Domain Walls

Having introduced the idea of spontaneous symmetry breaking, we are now
at the position of introducing the topological defects. Consider the cases of
a Goldstone model,

L= 5(0,6)(0"0) - V() o)

where ¢ is the scalar field and the potential is of the form, V(¢) = 3(¢*—n?)2.
By setting the Lagrangian to be zero?, we have a non-trivial analytic solution.

o) = ntanh((3/2) ) ©)
The calculation is done as follows,
S50 = 306~y M)
=56 - )
M (9)

(/2@ — )

Take integral on both sides and take the initial point to be at x = 0. We can
recover Eq. (6). The other trivial solutions to the Equation £ = 0is ¢ = +£mn.
The additional ”"vacuum” state is a localiezed "kink” centered about x = 0.
¢(x) = n and —n as x goes to +o0o and —oo, respectively. If the kink is
centered about x = xg, Eq. (6) becomes ¢(z,t) = ntanh((A\/2)Y?n(x —vt)).3

ITopological defects cannot be removed by continuously deforming the shape that fea-
tures the field. In this case, the topological defects cannot deform into the vacuum state.
In the language of group theory, a global symmetry described by a group, G, is broken to
a sub-group of of G such that G C H and M = G/H, where M is the coset of H in G.

2the kinetic energy is equivalent to the potential energy

3Here we also consider the Lorentz invariance of the theory so that the solition solution
can boost to any arbitrary velocity. The solution is valid for any non-relativistic velocity
.



To see how the topological defect comes about, we have the following
reasoning. Note the analytical solition solution, Eq.(6) is time-dependent,
which means the state is stable. Hence, the disconnected manifold, M has a
non-trivial topological property. Moreover, it costs a large amount of energy
to remove the topological defect. Or we may remove the defect by putting
an anti-defect into the system, which carries the opposite topological ori-
entations of the defect. We can also think of the topological orientations
as charges. The charges are topological charges governed by the topologi-
cal conservation laws. Without proof, I directly copy the expression of the
topological current from the book,

gt =", (10)

The above equation is derived from the topological conservation laws.

To better understand Eq. (10), we can relate the topological conservation
laws to the Noether theorem, wher the charge Q = [ dxjy is conserved.* So
the associated conserved charge is

N = /deO = Plo=too = Pla=—oo (11)

where the non-zero N implies that the ¢* kink is stable. This example is the
simplest case of the topological defects. There are some general cases which
cannot be described by analytical solition solutions. We must present the
higher dimensional topological defects in the context of topology.

3.1 Basic properties of the Domain walls

From the previous discussion, we know that Z, symmetry (¢ <> —¢) is
broken due the appearance of the ¢* kink. Or we can say the appearance
of domain walls is generally associated with a discrete symmetry breaking.
Domain walls usually occur at the boundaries between two regions, ¢ = —n
and ¢ = 7. We can also approximate the width of the wall with Eq. (6).

6~ (V)™ (12)

where we have used the fact lim, ,otanh(x) = x and locally the curvature
radii of the wall is much greater its thickness.We can also estimate the surface
energy density by using the vacuum energy at the center of the wall, p ~ An*.5

4Note that the dimension of the space is 1.
5The result directly follows from the form of the potential, V(¢) = 3 (¢* — n?)?. And
we can find the vacuum energy by setting ¢ to be zero.
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Furthermore, we may conclude that the surface energy density is sufficiently
large unless the symmetry scale 7 is very small. That’s why the domain walls
are very important to the homogeneity of the universe. In next section, we
will give a detailed calculation of the dynamics of the domain walls.

3.2 Domain wall dynamics

First of all, we need to describe the setup of this calculation. In most cases,
the thickness of the domain wall can be neglected and the wall can be treated
as a thin surface. The spacetime can be described by a three dimensional
worldsheet.

= ak(¢*),a=0,1,2 (13)

The action describing the wall is

5= [ dev=g(5(007 - V() (14)

Now we need to write down the metric of the worldsheet. For convenience,
we use the coordinates (¢ and z, where ( represents the surface and z is
distance normal to the surface. The metric in these coordinates is of the
form

ds® = yupdCdC® — d2? (15)

where 7., = guy(%)(%

). The spacetime volume element is

V—gd'z = \/yd*(d= (16)

where v = det(yq) = exp(trin(v.)). With the spacetime element, we can
write the string action as

S = /d4x\/—g£ (17)
o [ ¢/ (18)
where we have integrated out the z dependence in the last step and o =

— [ Ldz. Eq. (18) can be thought as the three-volume of the wall’s world-
sheet and o can be interpreted as the mass per unit area of the wall. Variation



of Eq. (17) with respect to the metric g, gives rise to the energy momentum
tensor.

1 65
™ = —2— = 0/5(4 z — ()]t 2 19
V1T e = 2Ol atat,  (19)
where we have used the relation (74)"' = 7% and the definition of the

det(vap)-
We can also determine the equations of motion of the wall by varying the

action with respect to 2*(().
Oz + Th, " a",a5, = 0 (20)

where [0 is the Beltrami differential %Ga(ﬁfy“bﬁb). We also have assumed

the metric is preserved such that 7,9, = 0 (Levi-civita connection). To
further simplify the problem, we take g,, to be n,,. So Eq. (20) can be
reduced to

Ouly/ ™ ats) = 0 (21)

Under a choice of gauge,
Yo1 = Yo2 = 0,70 = V7 (22)
This is actually the conformal gauge. So Eq. (21) becomes
T+ eACeBDaA(xfﬂjxy,D:p’g) =0 (23)

where we have defined Y48 =Pl A=1eACBD~ oy p = 2,2, p and @y =
Yoo = dety4p. We can find a family of solutions x(n',n?,¢) by introducing
an ansatz.

x(n',n*,t) =n® +x.(n', 1) (24)

where n is an unit vector and x, is on the plane that is perpendicular to n.
Substitute the ansatz into Eq. (23) and the gauge expressions.

%, —x| =0 (25)
Pt +a? =1 (27)

From the above expressions, we know that only the motion transverse to the
wall is observable.



4 Inflation and Defects in de Sitter Space

Now several questions arise: how can we find domain walls in the universe and
how to construct a model for such process? Cosmic inflation is a theorized
scenario of the rapid expanding early universe. The expansion process is
driven by the negative-pressure. The Big Bang model describes the evolution
of the universe from 1/100 after initial explosion. The model is based an
assumption that the universe is homogeneous and isotropic. Therefore, the
present universe arises from a tiny initial region.At the early stage of the
universe the ”false” vacuum is thermalized and the universe expands from
this point. People hope they can observe topological defects are formed after
or near the end of the inflation, where the inflation is driven the vacuum
energy.

4.1 Instanton Approach

In the book, the authors state that spherical domain walls can be contin-
uously created during the inflation process. So, we may extract the pre-
inflationary phase transitions by looking at those topological defects. Here,
we present an example of spherical domain walls by using instanton ap-
proach®. The corresponding spacetime is described by a four-sphere, where
the three-sphere represents the world surface of the wall. The four-sphere
lies in a five-dimensional Euclidean space,

Gtuwtri=H"? (28)

The instanton three sphere is

The evolution of the domain wall can be determined by an analytical contin-
uation to the Minkowski spacetime. Therefore, we have to connect Eq. (28)
and Eq. (29) by the stereographic mapping method. The de-Sitter space can
be realized as the usual heperboloid

52+w2—72:H72 (31)

SInstanton is a classical solution of the quantum field theory living in the Euclidean
spacetime.



and the worldsheet surface is
C=H7?2+7 (32)
w=0 (33)

We have to write a metric describing how the evolving wall would be viewed
by an observer in an inflationary universe.

ds® = dt* — e*'dx> (34)

In order to write down the metric above, we have to parameterize the hyper-
boloid coordinates in terms of the coordinates in Eq. (34), where the metric
in de-sitter space time is ds? = dr? — dw? — d¢2.

1

7 = H 'sinh(Ht) + 5Hx%fﬁ (35)
1

w= H 'cosh(Ht) — §HX26Ht (36)

¢? = xel't (37)

Insert Eq. (35) — (37) into Eq. (33). We have the wall evolution equation,
x? = H7%(1 4 e 211) (38)
In the frame of the coordinates, Eq. (34), the wall is a sphere of radius
R=H (e 4 1)/? (39)

The radius of the wall is H~! as t goes to infinity. We have obtained an
instanton solution, Eq. (38). In general, the expression can be replaced by

(x —x0)? = H ?(1 4+ exp[-2H (t — t5)]) (40)
where xy and ?; is dependent on the orientation of the three-sphere inside
the four-sphere.

5 Conclusion

This review article covers the elementary aspects of the domain walls. How-
ever, the reference is rather dated. Matured readers should consult more
advanced and recent cosmology texts.
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